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1. Introduction

Osteoblasts, the bone-forming cells, arise from 
multipotential mesenchymal stem cells (MSC), which 
are capable of giving rise to a number of cell lineages, 
such as adipocytes, myoblasts, or chondrocytes (1). 
When maintained under suitable culture conditions, 
they form bone-like nodules that represent the end 

product of proliferation and differentiation of relatively 
rare osteoprogenitor cells present in the starting cell 
population. 
 When exposed to osteogenic differentiation medium 
supplemented with 17-β-estradiol (E2), MSCs increase 
the expression of bone morphogenetic protein (BMP) 
and osteocalcin, and significantly increase the deposition 
of calcium (2,3). E2 also stimulates the expression of 
osteogenic genes for alkaline phosphatase (ALP) and 
type I collagen by MSCs (4). Regarding the role of 
estrogens in the osteogenic differentiation of MSCs, there 
is evidence that E2 supports growth and differentiation 
mostly through estrogen receptor α (ERα) (5). These 
observations suggest that estrogen could profoundly 
affect osteoblast physiology. Estrogen promotes bone 
health in part by reducing osteoblast apoptosis due to 
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activation of the extracellular signal-regulated kinase 
(ERK) signaling pathway and down-regulation of c-Jun 
N-terminal kinase (JNK), which alters activity of a 
number of transcription factors (6-8).
 Lipoproteins function as plasma carriers that 
transport lipids and lipophilic vitamins, which have been 
shown to influence bone metabolism, between peripheral 
blood and tissues (9). Cellular lipoprotein uptake is 
dependent on the interaction of their protein moieties, 
such as apolipoprotein E (ApoE), a 34 kDa glycoprotein, 
which plays a central role in lipoprotein metabolism, 
with endocytotic cell surface lipoprotein receptors. Over 
the last few decades, numerous studies have confirmed 
apoE regulated bone metabolism in mice (10-13), but the 
mechanism is still undefined. One possible molecular 
explanation was provided by a series of experiments 
that characterized the role of apoE in the uptake of 
triglyceride-rich lipoproteins (TRL) and TRL-associated 
vitamin K into osteoblasts (10).
 ApoE mediates uptake of these particles into 
target cells such as osteoblasts via receptor-mediated 
endocytosis by the apoE receptors, which are the low-
density lipoprotein receptor (LDLR) family and heparan 
sulfate proteoglycans (HSPGs) (14-16). ApoE has a 
strong affinity for and is the main ligand for members of 
the LDLR family. The LDLR family is a highly conserved 
receptor family with diverse functions in cellular 
physiology (shown in Table 1) (17-32). LDLR is the 
prototype of the entire family, and members of this family 
are structurally and functionally related to it. The other 
core members of the LDLR family include the very-low-
density lipoprotein receptors (VLDLR), apolipoprotein 
E receptor 2 (Apoer2), low-density lipoprotein receptor-
related proteins (LRPs), and megalin (17). 
 Genome-wide expression analysis had been 
conducted to identify genes regulated during osteoblastic 
differentiation. The results showed that among the 
LDLR family, megalin was up-regulated, while LRP1 
and the LDLR were down-regulated (33). However, 
the previous report only screened very few members 
of the LDLR family during osteoblastic differentiation. 
Binding of estrogens to the receptors in the nucleus 
stimulates transcription of target genes resulting from 
direct interactions of the receptor proteins with DNA or 
from interactions with other transcription factors (34). 
However, there is no report regarding the expression 
of ApoE receptors mRNA induced by estrogen during 
osteoblast differentiation in vitro. Thus, the current study 
sought to observe the regulation of the LDLR family 
gene expression by E2 during this process.

2. Materials and Methods

2.1. Chemicals and reagents

Serum-free and phenol red-free minimal essential 
medium (α-MEM) was obtained from Gibco-BRL 

(Gaithersburg, MD, USA). The Penicillin-streptomycin 
was purchased from the Beyotime Institute of 
Biotechnology (Shanghai, China). Collagenase, E2, 
ascorbic acid, β-glycerophosphate disodium salt 
hydrate and dexamethasone were purchased from 
Sigma-Aldrich Co (Saint Louis, MO, USA). Dispase 
was obtained from Hoffmann-La Roche Ltd (Basel, 
Schweiz). RNAiso Plus, PrimeScript RT reagent kit and 
SYBR Premix Ex Taq II reagent kit were purchased 
from TaKaRa Biotechnology (Otsu, Japan).

2.2. Mice

C57Bl/6 mice, 8-weeks-old, with a body mass between 
20 and 30 g were purchased from the Laboratory Animal 
Facility of Chinese Academy of Sciences (Shanghai, 
China), and habituated to the housing conditions for 3 
days. Afterwards, they were housed four (two male and 
two female) per cage on a reversed 12 hours light and 
12 hours dark cycle. Food and water were available ad 
libitum at room temperature. Newborn mice were used to 
isolate primary osteoblasts. The housing and handling of 
experimental animals were performed in accordance with 
the guidelines of the Chinese Council for Animal Care.

2.3. Primary osteoblast isolation

Osteoblasts were collected from the calvarium of 
newborn mice separately at two days as follows (35). 
Skull bones were extracted and digested (five times, 10 
min each time) in α-MEM containing 0.1% collagenase 
and 0.2% dispase. Supernatant from the first 10-
min digestion was discarded. Cells obtained from the 
remainder of the digestions were pooled and 5 × 105 
cells were seeded into serum-free and phenol red-free 
α-MEM containing 10 units/mL penicillin and 10 µg/
mL streptomycin in 6-well culture plates until they 
reached 80% confluence.

2.4. Osteoblast mineralization culture and E2 treatment 
in vitro

The osteogenic differentiation medium consisted 
of serum-free and phenol red-free α-MEM, 20 mM 
ascorbic acid, 1 M β-glycerophosphate disodium salt 
hydrate and 1 mM dexamethasone (36). For osteoblast 
mineralization culture, we treated the 80% confluent 
primary osteoblasts with the osteogenic differentiation 
medium containing serial concentrations of E2 (10-10 M, 
10-9 M, 10-8 M, 10-7 M, and 10-6 M) (37) or saline for 0 d, 
5 d and 25 d (10), respectively.

2.5. RNA isolation and quantitative real-time reverse 
transcription PCR

After stimulation, cells were pooled, total RNA was 
isolated and purified separately using the RNAiso 
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quantitative real-time PCR using SYBR Premix Ex 
Taqreagent kit on Applied BiosystemsInc 7900 HT 
(Waltham, MA, USA) in a final volume of 50 μL 
according to the manufacturer's instructions. The 

Plus according to the provided protocol. The reverse 
transcription reaction was performed according to 
the protocol from the PrimeScript RT reagent kit. 
Afterwards, mRNA expression was determined via 

Table 1. Introduction of LDLR family members

Receptors

LDLR 
(17,23)

VLDLR
(17,23)

LRP1
(19,23)

LRP1B 
(21,23)

Megalin
(17,22-24)

LRP3 (25)

LRP4
(18,26-28)

LRP5
(21,31)

LRP6
(21,31)

Apoer2
(17,23,32)

LRP10 
(30)

sorLA/LRP11
(17,23)

LRP12
(29)

Tissue expression

Liver, brain, heart, intestine, 
kidney, muscle, adrenal, lung, 
placenta, ovary, testis, bone

Brain, heart, kidney, muscle, 
a d i p o s e ,  a d r e n a l ,  l u n g , 
placenta, ovary, testis, bone

Liver, lung, brain, bone

Brain, kidney, uterus

Kidney, lung, placenta, ovary

Muscle, ovary.

Muscle, bone

Liver, heart, intestine, kidney, 
muscle, pancreas, lung, bone

Liver, heart, intestine, kidney, 
muscle, pancreas, lung, bone

Brain, placenta, ovary, testis

Brain, muscle, heart

Liver, brain, adrenal, ovary, 
testis

Human heart muscle

Ligands

Apolipoprotein B, apolipoprotein E, low-density 
lipoproteins

Apolipoprotein E, Reelin, lipoprotein lipase, 
tissue factor pathway inhibitor

Apolipoprotein E, chylomicron remnants, a2-
macroglobulin, amyloid precursor protein, 
protease/ protease inhibitor complexes, lipoprotein 
lipase, hepatic lipase, sphingolipid activator 
protein, Factor VIIa/tissue factor pathway inhibitor, 
plasminogen activators/plasminogen activator 
inhibitor-1, Factor XIa, Factor VIIIa, MMP9, 
MMP13, pregnancy zone protein, complement C3, 
C1-inhibitor, antithrombin III, heparin cofactor 
II, a1-antitrypsin, thrombospondin 1 and 2, 
Pseudomonas exotoxin A, rhinovirus, lactoferrin, 
heat shock protein 96, HIV tat protein

Unknown

Apolipoprotein B, apolipoprotein E, apolipoprotein 
J, apolipoprotein H, albumin, cubilin, plasminogen 
activators/plasminogen activator inhibitor-1, 
parathyroid hormone, retinol binding protein, 
vitamin D binding protein

Unknown

Agrin, dickkopf-1, sclerostin

Wnt proteins, dickkopf proteins (?)

Wnt proteins, dickkopf proteins

Apolipoprotein E, Reelin

Unknown

Apolipoprotein E, head activator peptide

Unknown

Functions

Lipoprotein/cholesterol uptake

Regulation of neuronal migration during 
embryonic development (predominantly 
cerebellum)

Lipoprotein and protease uptake, modulation 
of APP processing, protecting the vasculature, 
modulation of intracellular signaling, 
synaptic transmission?

Putative tumor suppressor gene

Embryonic renal development, vitamin 
homeostasis, renotubular reabsorption of 
proteins, regulation of thyroid and parathyroid 
functions, promoting morphogen signaling, 
embryonic cholesterol homeostasis?

Unknown

Participate in Agrin-LRP4-MuSK signaling 
pathway, involved in Wnt and bone 
morphogenetic protein signaling pathways

Regulation of bone formation and ocular 
embryonic development, presumably as 
Wntcoreceptor

Wnt signal transduction, generation of caudal 
paraxial mesoderm, mid- and hindbrain 
development, anteroposterior and dorsoventral 
patterning of the developing limbs

Regulation of neuronal migration during 
embryonic development (predominantly 
hippocampus and neocortex), positive 
regulator of Wnt/β-catenin signaling

Inhibiting the canonical Wnt/β-catenin 
signaling pathway

Head regeneration in hydra, presumably 
function in neurodevelopment

Activated protein C kinase 1, muscle 
integrin binding protein, and SMAD anchor 
for receptor activation
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corresponding primers used are listed in Table 2. 
Values of mRNA expression were normalized to those 
of the house keeping gene β-actin. All real-time PCR 
experiments were performed in triplicate.

2.6. Statistical analysis

All values are presented as the mean ± S.D. Statistically 
significant differences were assessed by one-way 
ANOVA followed by Tukey's test. A P value of less than 
0.05 was considered to be statistically significant.

3. Results

3.1. Most of members of the LDLR family genes were 
induced during osteoblast differentiation

We pooled the primary mouse calvarial osteoblasts 
at days 0, 5, and 25 of differentiation (10). Then, we 
isolated total RNA from each sample to identify the 
LDLR family genes whose expression was induced 
during osteoblast differentiation. β-actin was used as a 
control for standard gene expression. Most members of 
the LDLR family genes, such as, megalin, LRP3, LRP4, 
LRP5, LRP6, Apoer2, LRP10, LRP11 and LRP12, 
were induced during osteoblast differentiation (Figure 

1, p < 0.05, p < 0.01, p < 0.001). Besides, LRP1 and 
LRP1B gene expression at 5 day of differentiation was 
down-regulated compared to day 0 of differentiation 
(Figure 1, p < 0.05). LDLR gene expression at 25 days 
of differentiation was down-regulated compared to 0 
day of differentiation (Figure 1, p < 0.05). There was no 
significant change in the expression of VLDLR between 
days 0, 5, 25 of differentiation (Figure1, p > 0.05).

3.2. Regulation of LDLR family core members by E2 
during osteoblast differentiation

As described above, the core members among LDLR 
family include LDLR,VLDLR, LRP1, LRP1B, LRP4, 
LRP5, LRP6, megalin, Apoer2 and sorLA/LRP11, 
which are the confirmed ApoE receptors (16,38,39). In 
the current study, we found multifarious effects of E2 
on LDLR family genes expression during osteoblast 
differentiation.

3.2.1. VLDLR,megalin and LRP6 were up-regulated by 
E2 during osteoblast differentiation in a dose dependent 
manner

There was no significant change in expression of 

Table 2. Sequences of the primers for low-density 
lipoprotein receptors family and β-actin

LDLR

VLDLR

LRP1

LRP1B

Megalin

LRP3

LRP4

LRP5

LRP6

Apoer2

LRP10

sorLA /LRP11

LRP12

Sdc2

HSPG2

β-actin

FP*

RP**

FP
RP
FP
RP
FP
RP
FP
RP
FP
RP
FP
RP
FP
RP
FP
RP
FP
RP
FP
RP
FP
RP
FP
RP
FP
RP
FP
RP
FP
RP

5'-ACTGGTTGCCCTCCTTGTC-3'
5'-GCTCGTCCTCTGTGGTCTTC-3'
5'-GCCATCACATCCTGACTGAA-3'
5'-CCCAAGAAACCAGCAACATT-3'
5'-ATGCCAATGAGACCGTATGC-3'
5'-GGCTGAGGGAGATGTTGATG-3'
5'-CGAGAGGATGACTGTGGTGA-3'
5'-AGTGCCATTTGTTGCTGATG-3'
5'-CTGGTGAGGAAAGGAGTTGG-3'
5'-AAACGGACCCACAAATGAAG-3'
5'-CATTTCTACCCTGCCTCTGC-3'
5'-CTCGTCACTCCACCCTCTTC-3'
5'-ATCCTCCGTGCCAACCTTA-3'
5'-GTCCCAGAGTCGGTCCAGTA-3'
5'-CTGTGCTGATGGGTCTGATG-3'
5'-TGACGAAGAGGGAGAGGATG-3'
5'-TGACGCACAGGCTACTCAAC-3'
5'-CCACCAGATAAAGACGCACA-3'
5'-ATTTGTTTGGTCGTCGGTTC-3'
5'-TCCCTGTGGTCTCTGGAAAG-3'
5'-GCTGTGATGGGATTGATGC-3'
5'-GTCCTCCAAGGTGAGATTGC-3'
5'-CACGCCATTGTCCTTTATGA-3'
5'-CGGAGTCAGTCACAGTCAGC-3'
5'-GCTGGGTCCGCTTTACACTA-3'
5'-ATCGTCGTCTTCTCGTCCAC-3'
5'-GACAACCACAGCCACTCCAT-3'
5'-ATGCCTCCAACTCCTCCTCT-3'
5'-TGGTGCCTCACTGTCAAACT-3'
5'-GATGGTATGTGGTCGGTGTG-3'
5'-CCTCTATGCCAACACAGT-3'
5'-AGCCACCAATCCACACAG-3'

* FP, Forward Primer; ** RP, Reverse Primer.

Figure 1. Most members of the LDLR family genes were 
induced during osteoblast differentiation. Primary mouse 
calvarial osteoblasts treated with osteogenic differentiation 
medium were pooled at days 0, 5, and 25 of differentiation. 
Then, we isolated total RNA from each sample to identify the 
apolipoprotein genes whose expression was induced during 
osteoblast mineralization. The LDLR family genes mRNA 
levels at days 5 and 25 of differentiation relative to day 0 of 
differentiation. *p < 0.05, ***p < 0.001.
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VLDLR in the saline and 10-10 M E2 treated groups at 
days 5 and 25 of differentiation when compared with 
day 0 of differentiation (Figure 2A, p > 0.05). When the 
concentration of E2 was elevated, expression of VLDLR 
at days 5 and 25 of differentiation was increased and 
superior to it at day 0 of differentiation (Figure 2A, p < 
0.05, p < 0.01, p < 0.001). Whether in the saline group 
or in E2 treated groups, expression of megalin and 
LRP6 at days 5 and 25 of differentiation was increased 
compared to day 0 of differentiation (Figures 2D and 2G, 
p < 0.001).Moreover, at day 5 of differentiation and day 
25 of differentiation, the mRNA expression of VLDLR, 
megalin and LRP6 were up-regulated by E2 in a dose 
dependent manner (Figures 2B, 2C, 2E, 2F, 2H, and 2I, p 
< 0.05, p < 0.01).

3.2.2. LRP4, LRP5, Apoer2 and sorLA/LRP11 were down-
regulated by E2 during osteoblast differentiation in a dose 
dependent manner

Expression of LRP4, LRP5 and sorLA/LRP11 at days 5 
and 25 of differentiation were increased compared to day 
0 of differentiation in the saline group, 10-10 M E2 treated 
group and 10-9 E2 treated group (Figures 3A, 3D, and 3J, 
p < 0.05, p < 0.01, p < 0.001). There was no significant 

change in expression of LRP4, LRP5 and sorLA/LRP11 
in the 10-8 M E2 treated group at day 5 of differentiation 
when compared with day 0 of differentiation (Figures 
3A, 3D, and 3J, p > 0.05). In the 10-7 M E2 treated group 
and 10-6 M E2 treated group, mRNA levels of LRP4, 
LRP5 and sorLA/LRP11 at day 5 of differentiation 
were inferior to day 0 of differentiation (Figures 3A, 
3D, and 3J, p < 0.05, p < 0.01). However, mRNA levels 
of LRP4 and LRP5 in the 10-8 M E2 treated group, 
10-7 M E2 treated group and 10-6 M E2 treated group 
at day 25 of differentiation were still superior to day 
0 of differentiation (Figures 3A and 3D, p < 0.001). 
The mRNA levels of sorLA/LRP11 in the 10-8 M E2 
treated group and 10-7 M E2 treated group at day 25 of 
differentiation were superior to day 0 of differentiation, 
while in the 10-6 M E2 treated group the mRNA levels of 
sorLA/LRP11 showed no significant difference between 
day 0 and 25 of differentiation (Figure 3J, p > 0.05). 
 Express ion  of  Apoer2  a t  day  5  and  25  of 
differentiation were increased compared to day 0 of 
differentiation in saline group and E2 treated groups 
except the 10-6 M E2 treated group (Figure 3G, p < 
0.01, p < 0.001). There was no significant change in 
expression of Apoer2 in the 10-6 M E2 treated group at 
day 5 of differentiation when compared with day 0 of 

Figure 2. VLDLR, megalin and LRP6 were up-regulated by E2 during osteoblast differentiation in a dose dependent manner. 
Primary osteoblasts were treated with osteogenic differentiation medium containing serial concentrations of E2 (10-10 M, 10-9 M, 10-8 M, 
10-7 M, and 10-6 M) or saline for 0d, 5d and 25d, respectively. (A, D, G) VLDLR,megalin and LRP6 mRNA levels relative to it at the 
osteoblasts treated with saline for 0d. (B, E, H) VLDLR,megalin and LRP6 mRNA levels relative to treatment with saline at day 5 
of differentiation. (C, F, I) VLDLR, megalin and LRP6 mRNA levels relative to treatment with saline at day 25 of differentiation.*p 
< 0.05, **p < 0.01, ***p < 0.001.



www.biosciencetrends.com

BioScience Trends. 2016; 10(1):54-66. 59

differentiation (Figure 3G, p > 0.05), but the mRNA 
level of Apoer2 in the 10-6 M E2 treated group was still 
superior to it at day 0 of differentiation (Figure 3G, p < 
0.001). 
 Moreover, at day 5 of differentiation and day 25 of 
differentiation, the mRNA expression of LRP4, LRP5, 
Apoer2 and sorLA/LRP11 were down-regulated by E2 
in a dose dependent manner (Figures 3B, 3C, 3E, 3F, 
3H, 3I, 3K, and 3L, p < 0.05, p < 0.01).

3.2.3. Expression of LDLR, LRP1 and LRP1B were not 
affected by E2 during osteoblast differentiation

There was no significant change in expression of 
LDLR in the saline and E2 treated groups at day 
5 of differentiation when compared with day 0 of 

differentiation (Figure 4A, p > 0.05) but at day 25 of 
differentiation, mRNA levels of LDLR were decreased 
and inferior to day 0 of differentiation either in saline 
group or in E2 treated groups (Figure 4A, p < 0.05). 
Interestingly, mRNA levels of LRP1 and LRP1B at 
day 5 of differentiation were inferior to it day 0 of 
differentiation either in saline group or in E2 treated 
groups (Figures 4D and 4G, p < 0.05). However, at 
day 25 of differentiation, there was no significant 
change in expression of LRP1 and LRP1B in the saline 
and E2 treated groups when compared with day 0 of 
differentiation (Figures 4D and 4G, p > 0.05). Moreover, 
E2 did not affect the expression of LDLR, LRP1 and 
LRP1B genes either at day 5 of differentiation or day 25 
of differentiation (Figures 4B, 4C, 4E, 4F, 4H, and 4I, p 
> 0.05).

Figure 3. LRP4, LRP5, Apoer2 and sorLA/LRP11 were down-regulated by E2 during osteoblast differentiation in a dose 
dependent manner. Primary osteoblasts were treated with osteogenic differentiation medium containing serial concentrations of E2 
(10-10 M, 10-9 M, 10-8 M, 10-7 M and 10-6 M) or saline for 0d, 5d and 25d, respectively. (A, D, G, J) LRP4, LRP5, Apoer2 and sorLA/
LRP11 mRNA levels relative to osteoblasts treated with saline for 0d. (B, E, H, K) LRP4, LRP5, Apoer2 and sorLA/LRP11 mRNA 
levels relative to treatment with saline at day 5 of differentiation. (C, F, I, L) LRP4, LRP5, Apoer2 and sorLA/LRP11 mRNA levels 
relative to treatment with saline at day 25 of differentiation. *p < 0.05, **p < 0.01, ***p < 0.001.
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3.3. Regulation of other novel members in LDLR family 
by E2 during osteoblast differentiation

There are several novel members in the LDLR family 
including LRP3, LRP10 and LRP12 (25,29,40), 
which are uncertain if they are receptors for apoE. 
Interestingly, either in the saline group or in E2 treated 
group, LRP3, LRP10 and LRP12 genes were all induced 
at day 5 and 25 of differentiation (Figures 5A, 5D, and 
5G, p < 0.05, p < 0.01, p < 0.001). However, at day 5 of 
differentiation and day 25 of differentiation, E2 did not 
affect LRP3 gene expression (Figures 5B and 5C, p > 
0.05), it up-regulated LRP10 gene expression in a dose 
dependent manner (Figures 5E and 5F, p < 0.05, p < 
0.01), and down-regulated LRP12 gene expression in a 
dose dependent manner (Figures 5H and 5I, p < 0.05, p 
< 0.01).

3.4. Regulation of syndecan 2 (Sdc2) and HSPG2 by E2 
during osteoblast differentiation

Given HSPGs are receptors for apoE, Sdc2 and 

HSPG2 have been suggested to be involved in 
skeleton formation (41,42), and thus we analyzed the 
regulation of Sdc2 and HSPG2 by E2 during osteoblast 
differentiation as well. Our results showed that either 
in the saline group or in E2 treated group, both Sdc2 
and HSPG2 genes were induced at day 5 and 25 of 
differentiation (Figures 6A and 6D, p < 0.05, p < 0.01, 
p < 0.001). Moreover, E2 up-regulated Sdc2 gene 
expression in a dose dependent manner (Figures 6B and 
6C, p < 0.05, p < 0.01), but did not affect HSPG2 gene 
expression (Figures 6E and 6F, p > 0.05), either at day 
5 of differentiation or day 25 of differentiation.

4. Discussion

The process of osteoblast differentiation has been 
subdivided into three developmental stages: proliferation, 
extracellular matrix synthesis and maturation, and 
mineralization, each with characteristic changes in gene 
expression (43). Many independent studies of gene 
expression patterns during osteoblast differentiation have 
been described (10,33,44,45), in which apoE was the 

Figure 4. Expression of LDLR, LRP1 and LRP1B were not affected by E2 during osteoblast differentiation. Primary 
osteoblasts were treated with osteogenic differentiation medium containing serial concentrations of E2 (10-10 M, 10-9 M, 10-8 

M, 10-7 M and 10-6 M) or saline for 0d, 5d and 25d, respectively. (A, D, G) LDLR, LRP1 and LRP1B mRNA levels relative to 
osteoblasts treated with saline for 0d. (B, E, H) LDLR, LRP1 and LRP1B mRNA levels relative to treatment with saline at day 5 of 
differentiation. (C, F, I) LDLR, LRP1 and LRP1B mRNA levels relative to treatment with saline at day 25 of differentiation.*p < 0.05.
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Figure 5. Regulation of other novel members in LDLR family by E2 during osteoblast differentiation. Primary osteoblasts 
were treated with osteogenic differentiation medium containing serial concentrations of E2 (10-10 M, 10-9 M, 10-8 M, 10-7 M and 10-6 
M) or saline for 0d, 5d and 25d, respectively. (A, D, G) LRP3, LRP10 and LRP12 mRNA levels relative to osteoblasts treated with 
saline for 0 d. (B, E, H) LRP3, LRP10 and LRP12 mRNA levels relative to treatment with saline at day 5 of differentiation. (C, F, I) 
LRP3, LRP10 and LRP12 mRNA levels relative to treatment with saline at day 25 of differentiation.*p < 0.05, **p < 0.01, ***p < 0.001.

Figure 6. Regulation of Sdc2 and HSPG2 by E2 during osteoblast differentiation. Primary osteoblasts were treated with 
osteogenic differentiation medium containing serial concentrations of E2 (10-10 M, 10-9 M, 10-8 M, 10-7 M and 10-6 M) or saline 
for 0 d, 5 d and 25 d, respectively. (A, D) Sdc2 and HSPG2 mRNA levels relative to  osteoblasts treated with saline for 0d. (B, E) 
Sdc2 and HSPG2 mRNA levels relative to treatment with saline at day 5 of differentiation. (C, F) Sdc2 and HSPG2 mRNA levels 
relative to treatment with saline at day 25 of differentiation. *p < 0.05, **p < 0.01, ***p < 0.001.
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only apolipoprotein strongly induced during this process 
(10,33). ApoE regulated bone metabolism in mice is 
possible due to uptake of lipid and lipid soluble vitamins 
such as vitamin K into osteoblasts (10). It is a common 
pattern of receptor-mediated endocytosis by the apoE 
receptors including the LDLR family and HSPGs, for 
apoE mediated uptake of lipid particles into target cells 
such as osteoblasts (14-16). Generally, apoE mediates 
the interaction of apoE-containing lipoproteins and 
lipid complexes with the LDLR family. Interaction with 
HSPGs appears to attract and sequester apoE-containing 
lipoproteins at cell surfaces as well as to facilitate their 
interaction with the LDLR family (16,46). 
 Among LDLR family, confirmed ApoE receptors 
include: LDLR, VLDLR, LRP1, LRP1B, LRP4, LRP5, 
LRP6, megalin, Apoer2 and sorLA/LRP11 (16,38,39). 
Some of these receptors, such as LDLR and LRP1, 
influence ApoE levels (47,48). Others, such as Apoer2, 
VLDLR and LRP5/LRP6, play an important role in 
cellular development and are involved in signaling 
pathways like neural signaling and Wnt signaling (38,49). 
As we know, osteoblasts are derived from mesenchymal 
stem cells (MSCs). Wnt canonical signaling plays an 
important role in osteoblast differentiation both during 
embryogenesis and in adult life (50). However, there 
are several novel members in the LDLR family such 
as, LRP3, LRP10 and LRP12 (25,29,40), which are 
uncertain if they are receptors for apoE.
 Traditionally, members of the LDLR family have 
been regarded as cell surface endocytosis receptors that 
function in delivering their ligands to lysosomes for 
degradation and providing essential nutrients for cellular 
functions (17,51). However, recent studies suggest that 
members of the LDLR family may participate in several 
signal transduction pathways including the regulation of 
mitogen-activated protein kinases, cell adhesion, vesicle 
trafficking, neurotransmission, and neuronal migration 
(52,53). About twenty years ago, causal mutations in the 
LRP5 gene were identified to be involved in two rare 
bone disorders, which were related to the Wnt/β-catenin 
pathway (54-56). A number of reports were exploded 
to highlight the role of the Wnt/β-catenin pathway in 
the regulation of bone homeostasis (57-59). Recently, 
the most highlighted members of the LDLR family 
involved in the maintenance of bone metabolism were 
LRP5, LRP6, LRP4, and Apoer2 (26,60). Interestingly, 
results in the current study showed that all of these four 
members were induced during osteoblast differentiation 
(Figure 1).
 The current study also observed the regulation 
of apoE receptors mRNA expression by E2 during 
osteoblast differentiation in vitro. We found multifarious 
effects of E2 on apoE receptors genes expression during 
osteoblast differentiation. Among certain apoE receptors, 
VLDLR, megalin and LRP6 were up-regulated by E2 
during osteoblast differentiation in a dose dependent 
manner (Figure 2), whereas LRP4, LRP5, Apoer2 

and sorLA/LRP11 were down-regulated by E2 during 
osteoblast differentiation in a dose dependent manner 
(Figure 3). Expression of LDLR, LRP1 and LRP1B 
were not affected by E2 during osteoblast differentiation 
in a dose dependent manner (Figure 4).
 LRP5 and LRP6, sharing around 71% homology 
at the nucleotide level, are structurally related proteins 
and consist of co-receptors with the frizzled family of 
7 transmembrane spanning proteins (61). Wnts bind 
to these receptors resulting in a series of downstream 
intracelullar events (56). Although both LRP5 and LRP6 
are needed for normal bone development, they have 
distinct roles as well. LRP5 and LRP6 control osteoblast 
differentiation at different stages respectively. LRP5 is 
involved in late stages of differentiation, while LRP6 is 
required for early stages of differentiation (31). 
 Both LRP4 and Apoer2 are identified as novel 
receptors involved in bone metabolism. LRP4 is a novel 
receptor binding to osteoblast expressed dickkopf-1 
(Dkk1) and sclerostin, plays a physiological role in the 
regulation of bone growth and turnover likely through 
Wnt and BMP signaling pathways (28,62). Apoer2 
has been shown as a positive factor of the canonical 
Wnt signaling pathway, increasing Wnt-induced 
transcriptional responses, promoting Wnt-induced 
β-catenin accumulation, and controlling osteoblast 
differentiation (32).
 LDLR, VLDLR and LRP1 are the main endocytic 
receptors recognizing apoE-containing lipoproteins 
(51). Both of them are expressed in most tissues. LDLR 
is ubiquitously expressed and is a key receptor for 
maintaining cholesterol homeostasis in mammals (51). 
In contrast with LDLR which is widely distributed, 
VLDLR is not expressed in liver (63). Osteoblasts 
exhibit high levels of protein expression of LRP1 and 
LDLR, but VLDLR is expressed to a lower degree (64). 
No reports about LDLR affects on osteoblast physiology 
exist so far. However, Okayasu M et al. found impaired 
osteoclastogenesis and increased bone mass in Ldlr-/- 
mice because of a defect in osteoclastic cell-cell fusion, 
and this change was accompanied by decreases in bone 
resorption parameters, with no changes in bone formation 
parameters (65). As a receptor for removal of apoE-rich 
chylomicron remnants, LRP1 plays a predominant role 
among the LDLR family members in vitamin K1 uptake 
through chylomicron remnants endocytosis in human 
osteoblasts (64).
 Named megalin because of its huge molecular 
structure, and is a member of the LDLR family also called 
LRP2 that is abundantly expressed in different epithelial 
cell types (66). Megalin is involved in embryonic renal 
development, including vitamin D homeostasis, sex 
hormone signaling, and holoprosencephaly (51,67-69). 
Severe vitamin D deficiency and bone disease were 
shown in megalin-/- mice due to being unable to retrieve 
the steroid from the glomerular filtrate (70). However, 
Wang C et al. reported that polymorphisms of the LRP2 
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gene were not a major factor that contributes to the peak 
BMD variation in the Chinese population (71).
 Besides, among the novel LDLR family members, 
E2 did not affect LRP3 gene expression, up-regulated 
LRP10 gene expression in a dose dependent manner, 
and down-regulated LRP12 gene expression in a dose 
dependent manner (Figure 5). Both of them are novel 
members found in recent decades (25,29), thus no 
report about these members relative to bone metabolism 
has been shown.
 HSPGs are composed of a core protein to which 
heparan sulfate (HS) side-chains are covalently linked 
and occur in the extracellular matrix and on cell surfaces, 
while HS is a linear polysaccharide found in all animal 
tissues. HSPGs bind to a variety of protein ligands and 
regulates a wide variety of biological activities, including 
developmental processes (72,73), such as bone and 
organ formation (74). A report concluded that there are 
15 members in the HSPGs. Among these members, 
Sdc2 and HSPG2 have been suggested to be involved in 
skeleton formation (41,42). 
 In the current study, E2 up-regulated Sdc2 gene 
expression in a dose dependent manner, but did not 
affect HSPG2 gene expression (Figure 6). Members 
of the fibroblast growth factor (FGF) family appear 
to play major roles during skeletal development 
and postnatal osteogenesis, HSPGs are cell surface 
transmembrane proteins that interact with and 
promote the binding and signaling of FGFs (42). 
Sdc2 is abundant in putative precursor cells of hard 
and connective tissue, and its expression is high in 
prechondrogenic cells, decreases in differentiating 
chondrocytes, and persists in the perichondrium and 
periosteum at the onset of osteogenesis (42). HSPG2 is 
abundant in the extracellular matrix of cartilage and the 
lacunocanalicular space of adult bones, and deficiency 
in HSPG2 during bone development enhances 
osteogenesis and decreases quality of adult bone in 

mice (41).
 Sex steroid hormones act on their target cells by 
binding to members of the nuclear hormone receptor 
superfamily: estrogens bind to estrogen receptor (ER) 
α or ERβ, and androgens bind to the androgen receptor 
(AR) (75). Mice with deletion of ERα in MSC showed 
decreased periosteal bone formation due to decreased 
canonical Wnt signaling pathway (76). In our study, 
LRP5, LRP6, LRP4, and Apoer2, which are involved in 
the Wnt signaling pathway, presented different effects 
with E2. During osteoblast differentiation, LRP6 was 
up-regulated by E2 in a dose dependent manner, while 
LRP4, LRP5 and Apoer2 were down-regulated by E2 
in a dose dependent manner (Figure 3). Given that 
LRP6 is required for early stages of differentiation (31), 
we speculate E2 promotes osteoblast differentiation 
mainly in the early stage. Moreover, reports about the 
other members relative to osteoblast physiology are 
rare. Thus, further investigation is needed to clarify 
whether these molecules are involved in osteoblast 
differentiation and related mechanisms.
 In conclusion, the current study showed that most 
members of the LDLR family genes were induced during 
osteoblast differentiation in vitro, and the effect of E2 
on apoE receptors genes expression was multifarious 
during this process (shown in Table 3). Among the 
apoE receptors, LRP6 was up-regulated by E2 in a dose 
dependent manner during osteoblast differentiation. 
Given LRP6 is required for early stages of differentiation, 
we speculate E2 promotes osteoblast differentiation 
mainly in the early stage.
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No significant difference
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No significant difference
No significant difference
No significant difference
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Increased
Increased
Increased
Increased
Increased
Increased
Increased
No significant difference
Increased

Regulation by 17-β-estradiol

No significant difference
Increased
No significant difference
No significant difference
Increased
No significant difference
Decreased
Decreased
Increased
Decreased
Increased
Decreased
Decreased
Increased
No significant difference

During osteoblast differentiation
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