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1. Introduction

Pseudomonas fluorescens  belongs to the plant 
growth promoting rhizobacteria (PGPR), the group 
of bacteria that provide nutrients for plant growth, 
induce systemic resistance against diseases, and 
help plants to tolerate abiotic and biotic stress (1-
3). Some strains of P. fluorescens exert beneficial 
effects on plants by inhibiting the growth, or actions 
of, phytopathogenic microorganisms such as Pythium 
ultimum, Gaeumannomyces graminis and Fusarium 
oxysporum (2). They produce different types of 
secondary metabolites including antibiotics (mupirocin, 
pyrrolnitrin, pyoluteorin and 2,4-diacetylphloroglucinol), 
siderophores (pyocheline and pyoverdine) and hydrogen 

cyanide, that prevent plant seeds and roots from 
fungal infection (4-6). Furthermore, some strains of P. 
fluorescens can degrade pollutants including styrene, 
trinitrotoluene and polycyclic aromatic hydrocarbons (7-
9). In humans, P. fluorescens is part of the gut microflora 
(10). It can cause bacteraemia in immunocompromised 
patients (11).
 Root colonization by PGPR promotes soil fertility 
and nutrient uptake by plants (2). Plant root exudates 
contain amino acids (12), organic acids (13) and sugars 
(2) that serve as nutrients for PGPR, and therefore 
are sensed by bacteria as attractants. Previous studies 
showed that mutation of the gene encoding the central 
chemotaxis regulatory protein CheA in P. fluorescens 
WCS365 resulted in less efficient colonization of 
tomato roots in comparison to the wild-type strain (14). 
Furthermore, a hyper-motile mutant of P. fluorescens 
F113 was shown to be a more efficient root-tip colonizer 
and to have a more significant effect in biological 
control of plant pathogenic fungi in comparison to the 
wild-type strain (15). Therefore, chemotaxis towards 
nutrients is thought to play a crucial role in effective root 
colonization by P. fluorescens.
 Methyl-accepting chemotaxis proteins (MCPs) are 
membrane-embedded receptors that mediate chemotaxis 
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by recognizing chemical signal molecules (16). The 
binding of these molecules to the periplasmic sensing 
domains of MCPs initiates a chemotactic signalling 
cascade (16). The genome of P. fluorescens Pf0-1 
encodes genes for 37 MCPs. Information on the ligands 
recognized by these receptors is limited. Three MCPs 
have been identified as chemotactic transducers of 
amino acids (CtaA, CtaB and CtaC) – receptors that 
recognize naturally-occurring amino acids (17). MCPs 
Pfl01_3768, Pfl01_0728 and Pfl01_0728 were reported 
to recognize L-malate, succinate and fumarate (18). The 
metabolism of the aromatic compound 2-nitrobenzoate 
was shown to  involve the chemoreceptor  for 
2-nitrobenzoate NbaY (19). 
 CtaA has a very broad ligand specificity and 
recognizes 16 different amino acids (17). The structural 
basis behind ligand recognition and the mechanism 
of signalling in response of ligand binding to CtaA 
remains unknown. A BLAST search against the known 
structures available in the Protein Data Bank (PDB) 
revealed that the periplasmic sensing domain of CtaA 
(CtaAperi) has 30%, 24%, and 20% sequence identity with 
V. cholerae chemoreceptor MCP37 (PDB code 5AVE 
(20)), Methanosarcina mazei histidine kinase (PDB code 
3li8, (21)) and Campylobacter jejuni chemoreceptor Tlp3 
(PDB code 4xmr (22)), respectively. The periplasmic 
sensing domain of an amino acid chemotaxis receptor 
PctA from Pseudomonas aeruginosa that has 65% amino 
acid sequence identity with CtaAperi (17) was crystallized 
in 2013 (23), but no report of the structure followed. 
The Pfam analysis (24) using the primary sequence 
of CtaAperi revealed the presence of a Cache (calcium 
channels and chemotaxis receptors) motif (residues 
107-185) (25), which suggests that CtaAperi belongs to 
the family of receptor proteins with two Per-Arnt-Sim 
(PAS) sensing domains. Recently, we have reported 
the crystal structure of the periplasmic sensing domain 
of C. jejuni transducer-like protein 3 (Tlp3) harboring 
two PAS domains. Tlp3 recognizes its ligand isoleucine 
directly, via its membrane-distal PAS domain (22). The 
structural analysis of Tlp3 and structure-guided sequence 
alignments revealed that receptors for amino acids, that 
have a tandem-PAS sensing domain that recognizes the 
ligand directly, contain a conserved consensus motif 
DXXX(R/K)CWYXXA (22). We note that CtaAperi 
contains this motif and is therefore likely to bind at least 
some of its amino acid ligands directly. To investigate 
the structural basis of how CtaA recognizes its signal 
molecules and transduces the signal across the membrane, 
we have initiated structural studies on recombinant 
CtaAperi. Here, we report its cloning, purification, co-
crystallization with one of its putative ligands (serine) 
and initial X-ray crystallographic analysis.

2. Materials and Methods

2.1. Gene cloning and overexpression

The two transmembrane helices of CtaA from P. 
fluorescens Pf0-1 (GenBank: ABA76168.1) have been 
predicted to comprise residues 7-33 and 278-301 by the 
TMHMM sever v.2.0 (http://www.cbs.dtu.dk/services/
TMHMM-2.0/) (26) (Figure 1). The sequence for the 
periplasmic sensing domain (CtaAperi, residues 34-277) 
was codon-optimized for expression in Escherichia 
coli and synthesized and ligated into the expression 
vector pET151/D-TOPO (Invitrogen) by GenScript. 
The protein construct had an N-terminal His6-tag 
separated from the CtaAperi coding sequence by the linker 
GKPIPNPLLGLDSTENLYFQ↓GIDPFT containing 
a Tobacco Etch Virus (TEV) protease cleavage site 
(underlined). The E. coli BL21 (DE3) cells (Novagen) 
were transformed with the expression vector, grown 
at 310 K in Luria Bertani broth supplemented with 50 
mg/mL ampicillin to OD600 of 0.6, and then protein 
expression was induced with 0.5 mM isopropyl-b-D-1-
thiogalactopyranoside (Thermo Scientific) for 3.5 h at 
310 K. The cells were harvested by centrifugation at 6,000 
g for 15 min at 277 K. 

2.2. Purification

The cells were resuspended in 20 mM Tris-HCl buffer 
pH 8.0 and 200 mM NaCl, lysed using sonication and 
centrifuged at 12,000 g for 30 min at 277 K. NaCl and 
imidazole were then added to the supernatant to final 
concentrations of 500 and 15 mM, respectively, and the 
sample was loaded onto a 5 mL HiTrap Chelating HP 
column (GE Healthcare) pre-washed with buffer A (20 
mM Tris-HCl pH 8.0, 500 mM NaCl, 15 mM imidazole). 
The protein was eluted with buffer A, supplemented 
with 500 mM imidazole, after the column was washed 
with 20 column volumes of buffer A containing 20 mM 
imidazole. The N-terminal tag was cleaved with His6-
TEV protease overnight at 277 K whilst dialyzing the 
sample against buffer B [50 mM Tris-HCl pH 8.0, 2 mM 
dithiothreitol, 200 mM NaCl, 1% (v/v) glycerol]. NaCl 
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Figure 1. The predicted membrane topology of P. fluorescens 
CtaA and the boundaries (amino acid residue numbers) of 
the periplasmic sensory domain CtaAperi characterized in this 
study.
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CCD detector on the MX1 beamline of the Australian 
Synchrotron (AS) (Figure 4). A total of 90 images were 
collected using a 0.5º oscillation width. The data were 
processed and scaled using iMosflm (28) and AIMLESS 
(29) from the CCP4 suite (30). The statistics of data 
collection and processing are summarized in Table 1.

3. Results and Discussion

Recombinant P. fluorescens CtaAperi was over-expressed 
in E. coli BL21 (DE3) harboring pET151/D-TOPO 
plasmid upon induction of T7 polymerase. The protein 
was purified to >98% electrophoretic homogeneity 
based on Coomassie Blue staining of SDS-PAGE gels 
(Figure 2). It consists of amino-acid residues 34-277 
of CtaA with six additional residues at the N terminus 
originating from the TEV cleavage site (GIDPFT). 
The protein migrated on SDS-PAGE with an apparent 
molecular weight of 25 kDa, which is in agreement with 
the value calculated from the amino acid sequence (27 
kDa). It eluted as a single peak during size-exclusion 
chromatography (SEC). Estimation of its molecular 
weight from the mobility on the SEC column calibrated 
with reference to the mobility of globular proteins of 

and imidazole were then added to the sample to final 
concentrations of 500 and 15 mM, respectively, and the 
TEV protease and the uncleaved protein were removed 
on a HiTrap Chelating HP column. The flowthrough 
was concentrated to 2 mL in an Amicon Ultracel 10 
kDa cutoff concentrator and purified further by passing 
through a Superdex 200 HiLoad 26/60 gel-filtration 
column (GE Healthcare) equilibrated with buffer C 
(10 mM Tris-HCl pH 8.0, 200 mM NaCl). Protein 
concentration was determined using the Bradford assay 
(27). The protein purity was estimated to be greater than 
98% (Figure 2).

2.3. Crystallization

Prior to crystallization, the protein sample was 
concentrated to 10 mg/mL, mixed with serine solution 
(final concentration 2 mM), centrifuged for 20 min 
at 13,000 g and transferred into a clean tube. Initial 
crystallization screening was performed by the vapour-
diffusion method in the hanging-drop format using an 
automated Phoenix crystallization robot (Art Robbins 
instruments) and Crystal Screen HT, Index Screen HT 
and PEG/Ion Screen HT (Hampton Research). The 
initial crystallization droplets comprised 100 nL protein 
solution mixed with 100 nL of the reservoir solution 
and equilibrated against 50 µL of the reservoir solution 
in a 96-well Art Robbins Crystalmation Intelli-Plate 
(Hampton Research). After one day, crystals appeared 
from condition No. 6 of Index Screen HT, which 
contained 2.0 M ammonium sulfate and 0.1 M Tris-HCl 
pH 8.5. This condition was further optimized to improve 
the crystals quality, yielding an optimal crystallization 
reservoir solution consisting of 2.0 M ammonium sulfate 
and 0.1 M Tris-HCl pH 8.0 (Figure 3). 

2.4. Data collection and processing

Prior to data collection, crystals were transferred from 
the crystallization drop into a cryoprotectant solution 
containing 0.1 M Tris-HCl pH 8.0, 2.2 M ammonium 
sulfate, 2 mM serine and 30% (v/v) glycerol, and flash-
cooled by plunging in liquid nitrogen. A complete X-ray 
diffraction data set was collected from a single crystal 
to 1.9 Å resolution using an ADSC Quantum 210r 

Figure 2. Coomassie Blue-stained 15% SDS-PAGE gel of 
recombinant CtaAperi. The left lane contains molecular-
weight marker (labelled in kDa).

Figure 3. Crystals of a putative CtaAperi complex with 
serine.

Figure 4. A representative 0.5° oscillation image of the data 
collected using an ADSC Quantum 210r CCD detector on 
the MX1 station of the Australian Synchrotron, Victoria, 
Australia. A magnified rectangle shows diffraction spots 
beyond 1.9 Å resolution.
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a known mass gave the value of approximately 23 
kDa, which suggested that P. fluorescens CtaAperi is 
monomeric in solution under the tested conditions.
 An X-ray diffraction data set was collected for a cryo-
cooled crystal of CtaAperi grown in the presence of serine 
to 1.9 Å using the AS facility (Figure 4). Data analysis 
by the autoindexing routine in iMosflm was consistent 
with a body-centred orthorhombic crystal system (I222 
or I212121), with unit cell parameters a = 67.2, b = 76.0, 
c = 113.3 Å. The average I/σ(I) value was 12.7 for all 
reflections (resolution range 33.8-1.9 Å) and 2.5 in the 
highest resolution shell (1.94-1.90 Å). Data processing 
gave an Rmerge of 0.051 for intensities (0.346 in the 
resolution shell 1.94-1.90 Å) and these data were 92% 
complete (94% completeness in the highest resolution 
shell). 
 The calculated Matthews coefficient (31) for one 
subunit of CtaAperi was 2.64 Å3 Da-1, which suggests 
that the asymmetric unit is highly likely to contain one 
protein molecule. The corresponding solvent content is 
approximately 53%. Molecular replacement approaches 
with the structures of the sensing domains of V. cholerae 
MCP37, M. mazei histidine kinase or C. jejuni Tlp3 
did not yield a reliable solution. A search for heavy-
atom derivatives with the aim to solve the structure 
using multiple isomorphous replacement and/or multi-
wavelength anomalous dispersion methods is in progress. 
Structural analysis of the CtaA would be an important 
step towards our understanding of how CtaA senses its 
environmental signals and communicates inside the cell 
via the membrane.
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