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1. Introduction

The rhizome of  Dioscorea bulbi fera  Linn.  is 
traditionally used to treat thyroid disease and cancer 
in China (1). However, D. bulbifera can cause severe 
hepatotoxicity in clinical practice, which seriously 
limits the anti-tumor activity of this medicinal herb (2). 
Our previous studies demonstrated that intake of D. 
bulbifera could result in severe liver injury such as liver 
swelling, fatty degeneration, and even animal death (3-

5). Diosbulbin B (DB), a diterpene lactone, was isolated 
from D. bulbifera, and showed significant antitumor 
activity in our previous reported study (6). However, 
our previous studies also showed that DB was the main 
hepatotoxic compound in D. bulbifera, and it caused 
oxidative stress-associated liver injury (4,7).
 Ferulic acid (FA) is found in many Chinese medicinal 
herbs such as Angelica sinensis (Oliv) Diels (Angelica) 
and Ligusticum chuanxiong Hort. (Ligusticum) (8). FA 
exerts multiple biological activities such as antioxidant, 
and anti-inflammation (9,10) and it is known for 
treatment of Alzheimer's disease (11), cardiovascular 
disease (12), and cancer (13). In addition, FA is reported 
to have hepato-protective activity (14,15). Previous 
study in our lab has demonstrated that A. sinensis root 
prevented liver injury induced by D. bulbifera rhizome 
(16). As the main active compound in A. sinensis, we 
think that FA may prevent DB-induced liver injury 
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in mice. In addition, our previous study has already 
demonstrated that FA attenuated DB-induced liver injury 
in S180 tumor-bearing mice and further augmented DB-
induced inhibition of tumor growth in vivo (17). The 
present study is designed to investigate protection by FA 
against acute liver injury induced by DB in mice and the 
potential underlying mechanism.

2. Materials and Methods

2.1. Drugs and reagents

DB (Figure1A) and FA (Figure 1B) were purchased from 
Shanghai Tauto Biotech Co., Ltd (Shanghai, China). 
Antibodies against inhibitor of kappa B (IκB), p65 
subunit of nuclear factor kappa B (NFκBp65) and β-actin 
were all purchased from Cell Signaling Technology 
(Danvers, MA, USA). Peroxidase-conjugated goat 
anti-Rabbit IgG (H+L) was purchased from Jackson 
ImmunoResearch (West Grove, PA, USA). Nitrocellulose 
membranes were purchased from Bio-Rad (Hercules, 
CA, USA). Enhanced chemiluminescence detection 
system was obtained from Millipore Corporation 
(Billerica, MA, USA). Nuclear/Cytosol fractionation 
Kit was obtained from BioVision (Palo Alto, CA, USA). 
Enzyme linked immunosorbent assay (ELISA) Kits for 
determining tumor necrosis factor alpha (TNF-α) and 
interferon-γ (IFN-γ) were purchased from RapidBio 
(West Hills, CA, USA). Kits for detecting the activity of 
alanine/aspartate aminotransferase (ALT/AST), alkaline 
phosphatase (ALP), myeloperoxidase (MPO) and 
malondialdehyde (MDA) were purchased from Nanjing 
Jiancheng Bioengineering Institute (Nanjing, China).

2.2. Experimental animals

Specific pathogen free male ICR mice (18-22 g body 
weight) were obtained from the Shanghai laboratory 
animal center of Chinese Academy of Sciences 
(Shanghai, China). Animals were fed a standard 
laboratory diet and given free access to tap water, kept 
in a controlled room temperature (22 ± 1°C), humidity 
(65 ± 5 %), and a 12:12-h light/dark cycle. All animals 
received humane care in compliance with the institutional 
animal care guidelines approved by the Experimental 
Animal Ethical Committee of Shanghai University of 
Traditional Chinese Medicine.

2.3. Treatment protocol

Mice were divided into 6 groups. Mice in group 1 were 
used as control group. Mice in group 2 were orally 
administered DB (250 mg/kg, suspended in 0.5% 
sodium carboxyl methyl cellulose (CMC-Na)) only 
once on the sixth day. Mice in groups 3-5 were orally 
given FA suspended in 0.5% CMC-Na (20, 40 or 80 
mg/kg per day) for six consecutive days, and DB was 

orally given two hours after the final administration of 
FA. Mice in group 6 were given FA only, suspended in 
0.5% CMC-Na (80 mg/kg per day), for six consecutive 
days. Twenty-four hours later after administration of 
DB, blood and liver samples were collected for further 
research (16-18). 

2.4. Assay for serum ALT, AST and ALP

The blood samples collected from all groups of mice 
were kept at room temperature to coagulate for 2 h. 
Serum was then isolated and transferred to new tubes 
after centrifugation at 840 × g for 15 min. Serum ALT, 
AST and ALP levels were detected with kits according 
to the manufacturer's instructions.

2.5. Histological observation

The liver tissues were soaked in 10 % formalin, and 
embedded in paraffin. Samples were cut into five 
micrometer sections and stained with hematoxylin-
eosin for further histological assessment of tissue 
damage.

2.6. TdT-mediated biotin–dUTP nick-end labelling 
(TUNEL) assay

For the detection of apoptosis, paraffin-embedded 
sections were stained with the TUNEL detection kit 
according to the manufacturer's protocol. The cells 
showing nuclear dark-brown staining were considered 
to be positive staining (apoptotic cells). The apoptotic 
hepatocytes were counted manually in at least nine 
randomly selected fields from each group using a light 
microscope at a magnification of ×200.

2.7. Analysis of MDA amount

MDA amount in liver was determined using an MDA 
detection kit according to the manufacturer's instructions. 
MDA amount is expressed as nmol/mg of protein.

2.8. ELISA analysis

Serum contents of TNF-α and IFN-γ were measured with 
ELISA kits according to the manufacturer's instructions.

2.9. Analysis of MPO activity

Liver MPO activity was determined using a MPO 
detection kit according to the manufacturer's instructions. 
MPO activity is expressed as units/g of protein.

2.10. Extracting cytosol and nuclear proteins

Cytosol and nuclear proteins were extracted according 
to the manufacturer's instructions. Protein concentration 
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compared with control. After treatment with FA (40, 80 
mg/kg), DB-induced an increase in serum levels of ALT, 
AST and ALP, which were all decreased (p < 0.05, p < 
0.01, p < 0.001). In addition, there were no significant 
differences in the serum levels of ALT, AST and ALP 
between control and FA (80 mg/kg)-treated mice (p > 
0.05).

3.2. Histological evaluation of liver

As compared to control, the liver from the mice treated 
with DB showed serious liver damage, indicated by 
hepatocellular degeneration and lymphocyte infiltration 
(Figure 2B). After treatment with FA (20, 40, 80 mg/
kg), all these phenomena were ameliorated (Figure 
2C, 2D, and 2E), and FA at 80 mg/kg was the most 
effective. Livers from control (Figure 2A) and FA 
(80 mg/kg)-treated (Figure 2F) mice showed normal 
histology.

3.3. FA alleviated DB-induced cell apoptosis

As shown in Figure 3A-a and 3A-b, there were 
an increased number of brown (TUNEL-positive) 
apoptotic hepatocytes in DB (250 mg/kg)-treated mice 
as compared with control. After treatment with FA (80 
mg/kg), the increased number of apoptotic cells was 
reduced (Figure 3A-c), but FA (80 mg/kg) alone had no 
effect on liver apoptosis. After counting the apoptotic 
hepatocytes, the results showed that FA (80 mg/kg) 
decreased the increased apoptotic hepatocytes induced 
by DB (p < 0.01) (Figure 3B).

3.4. FA decreased DB-induced increase of liver MDA 
amount

As shown in Figure 3C, DB increased liver amount of 
MDA (p < 0.01), whereas FA (40, 80 mg/kg) reduced 
the increased amount of MDA induced by DB (p < 0.01, 
p < 0.001).

3.5. FA reduced DB-induced increase in serum TNF-α 
and IFN-γ levels, and liver MPO activity

As shown in Figure 4A and 4B, DB increased serum 
levels of TNF-α and IFN-γ (p < 0.01, p < 0.001), 
whereas FA (20, 40, 80 mg/kg) reduced the increase 
in serum levels of TNF-α and IFN-γ induced by DB (p 
< 0.05, p < 0.01, p < 0.001). In addition, the results of 
Figure 4C showed that DB-induced increase in liver 
MPO activity was reduced in FA (40, 80 mg/kg)-treated 
mice (p < 0.05).

3.6. FA reversed DB-induced decrease in IκB expression 
and increase in NFκBp65 nuclear translocation

As shown in Figure 5A and 5C, FA (80 mg/kg) increased 

was determined and normalized to equal protein 
concentrations.

2.11. Western blot analysis

Liver tissue was homogenized in ice-cold lysis buffer 
containing 50 mM Tris (pH 7.5), 150 mM NaCl, 1 
mM EDTA, 20 mM NaF, 0.5% NP-40, 10% glycerol, 
1 mM phenylmethylsulfonyl fluoride, 10 g/mL 
aprotinin, 10 g/mL leupeptin, 10 g/mL pepstatin A. The 
homogenate was centrifuged at 10,000 g for 20 min 
at 4°C. The supernatant was transferred to new tubes 
and protein concentration was assayed and normalized 
to equal protein concentrations. Protein samples were 
separated by sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) and blots were incubated 
with primary and horseradish peroxidase (HRP)-
conjugated secondary antibodies. The protein bands 
were quantified by ratios of integral optic density (IOD) 
following normalization to β-actin, and the results were 
expressed as percentage of control.

2.12. Statistical analysis

All experimental data were expressed as means ± 
standard error (S.E.). Significant differences were 
determined by One-Way ANOVA. p < 0.05 was 
considered as statistically significant difference.

3. Results

3.1. FA decreased DB-induced increase in serum levels 
of ALT, AST and ALP

Shown in Figure 1C and 1D, DB (250 mg/kg) are 
increased serum levels of ALT, AST and ALP as 

Figure 1. FA decreased the increased serum levels of ALT, 
AST and ALP induced by DB. Chemical structure of DB 
(A) and FA (B); (C) ALT and AST; (D) ALP. Data are shown 
as means ± S.E. (n = 10). **p < 0.01, ***p < 0.001 versus 
control group, #p < 0.05, ##p < 0.01, ###p < 0.001 versus DB-
treated group. ALP, alkaline phosphatase; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; DB, 
Diosbulbin B; FA, Ferulic acid.
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Figure 2. Histological evaluation of liver. (a) Vehicle control; 
(b) DB (250 mg/kg); (c) DB (250 mg/kg) + FA (20 mg/kg); 
(d) DB (250 mg/kg) + FA (40 mg/kg); (e) DB (250 mg/kg) + 
FA (80 mg/kg), (f) FA (80 mg/kg). Liver sections were stained 
with hematoxylin-eosin (original magnification 100 ×). DB, 
Diosbulbin B; FA, Ferulic acid.

Figure 3. FA alleviated DB-induced liver apoptosis and DB-
increased liver MDA amount. (A) Apoptosis was determined 
by TUNEL staining assay. Typical images were chosen from 
each group. (a) Vehicle control, (b) DB (250 mg/kg), (c) DB 
(250 mg/kg) + FA (80 mg/kg), (d) FA (80 mg/kg). (original 
magnification 200 ×). (B) Data are shown as means ± S.E., (n 
= 4). *p < 0.05 versus control, ##p < 0.01 versus DB-treated 
group. (C) FA decreased the increased liver MDA amount 
induced by DB. Data are shown as means ± S.E., (n = 9-10). 
**p < 0.01 versus control, ##p < 0.01, ###p < 0.001 versus DB-
treated group. DB, Diosbulbin B; FA, Ferulic acid.

Figure 4. FA decreased DB-increased serum TNF-α and 
IFN-γ levels, and liver MPO activity. (A) Serum TNF-α; 
(B) Serum IFN-γ; (C) Liver MPO activity. Data are shown as 
means ± S.E., (n = 8-10). *p < 0.05, **p < 0.01, ***p < 0.001 
versus control, #p < 0.05, ##p < 0.01 versus DB-treated group. 
DB, Diosbulbin B.

Figure 5. FA reversed DB-induced the decreased IκB 
expression and increased NFκBp65 nuclear translocation. 
(A) The expression of IκB in cytoplasm; (B) The expression 
of cytosol and nuclear NFκBp65 protein; (C) Quantitative 
densitometric analysis of IκB protein; (D) Quantitative 
densitometric analysis of NFκBp65 protein. The bands were 
normalized to basal β-actin expression and the vehicle control 
is set as 100%. Data are shown as means ± S.E., (n = 3-4). **p 
< 0.01, ***p < 0.001 versus control, #p < 0.05, ###p < 0.001 
versus DB-treated group. DB, Diosbulbin B.
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the decreased expression of IκB protein induced by DB 
(p < 0.05). After treatment with DB (250 mg/kg), the 
nuclear expression of NFκBp65 protein was increased (p 
< 0.05) (Figure 5B and 5D). In contrast, FA (80 mg/kg) 
inhibited this increase of NFκBp65 protein in nucleus 
induced by DB (p < 0.01) (Figures 5B and 5D).

4. Discussion

The increased levels of serum ALT, AST and ALP are 
commonly used to indicate liver injury (19). Our results 
of ALT, AST and ALP analysis demonstrate that FA 
can prevent DB-induced liver injury. In addition, such 
protection is further evidenced by histological evaluation 
of liver. Previous reports demonstrate that FA can 
attenuate ischemia/reperfusion or carbon tetrachloride-
induced liver injury (14,15). Meanwhile, in our 
previous study, FA can not only ameliorate DB-induced 
liver injury in tumor-bearing mice, but also increase 
the anticancer effect of DB (17). The present study 
further evidenced the detoxification of FA against DB-
induced acute liver injury, and the present and previous 
studies indicate the potential value for development 
of the combined application of DB with FA for cancer 
treatment. 
 Apoptosis is the process of programmed cell death, 
which may occur in various organisms including 
liver (20). In situ detection of apoptosis by using 
TUNEL assay is a commonly used method to analyze 
the existence of apoptosis (21). Our present results 
demonstrate that DB can induce hepatocyte apoptosis, 
whereas FA can prevent DB-induced apoptosis in liver. 
Our previous studies have already demonstrated that DB 
and D. bulbifera induced oxidative liver injury (3,4,7), 
and the present study is the first report concerning DB-
induced liver apoptosis. 
 Oxidative stress plays an important role in drug-
induced liver injury (22). Reactive oxygen species (ROS) 
are very active and can react with lipid, and MDA is one 
of the main end products, thus MDA is often used as an 
indicator to assess oxidative injury (23). Our previous 
studies have already demonstrated that DB and D. 
bulbifera can induce oxidative liver injury (3,4,7). The 
present results demonstrate that FA can alleviate DB-
induced liver oxidative injury in vivo.
 TNF-α is a pro-inflammatory cytokine produced 
principally by activated macrophages, and previous 
reports demonstrated that TNF-α was involved in 
alcoholic hepatitis (24), and ischemia/reperfusion-
induced liver injury (25). IFN-γ is a cytokine that is 
critical for regulating innate and adaptive immunity, 
and it is also reported to be involved in various toxins-
induced liver injuries such as acetaminophen and carbon 
tetrachloride (26,27). MPO exists in neutrophils and 
its activity is generally used to assess the infiltration of 
neutrophils (28). The increased MPO activity is found 
in carbon tetrachloride, α-naphthylisothiocyanate, and 

trauma-hemorrhagic shock-induced liver injury (29-
31). The present study demonstrates that DB increases 
serum levels of TNF-α and IFN-γ, and elevates liver 
MPO activity, which indicates the occurrence of 
hepatic inflammation. Furthermore, FA can decrease 
those increased TNF-α, IFN-γ, and MPO activities, 
which suggests that FA can ameliorate DB-induced 
immunological liver injury.
 It is well known that transcription factor NFκB 
plays a critical role in regulating host immune and 
inflammatory responses (32,33). In un-stimulated cells, 
NFκB exists in cytoplasm associated with the inhibitory 
protein IκB (34). The predominant form of NFκB is a 
heterodimer composed of p50 and p65 (Rel A) subunits, 
and NFκB is activated in response to primary (viruses, 
bacteria, UV) or secondary (inflammatory cytokines) 
pathogenic stimuli (32,35). Stimulation induces the 
release of NFκB from IκB and translocation to the 
nucleus, where it binds to the DNA at specific κB sites, 
and thus initiates the expression of target genes such as 
TNF-α (36,37). Our results demonstrate that FA reverses 
DB-induced translocation of p65 into the nucleus and 
decreased expression of cytosol IκB. Those results 
suggest that FA attenuates DB-induced immunological 
liver injury via inhibiting NFκB activation. 
 In conclusion, the present study demonstrates that 
FA, the major compound in A. sinensis, can prevent 
DB-induced liver injury, which may contribute to the 
detoxification of A. sinensis against liver injury induced 
by D. bulbifera, and provides strong experimental 
evidence of potential combined application of A. 
sinensis and D. bulbifera in the clinic. In addition, the 
amelioration of FA against DB-induced immunological 
liver injury via inhibiting NFκB activation may be the 
main mechanism involved in the protection of FA against 
DB-induced acute liver injury.
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