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refolding, purification, crystallization, and X-ray crystallographic 
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1. Introduction

Pseudomonas fluorescens  and other fluorescent 
Pseudomonads belong to the group of plant growth 
promoting rhizobacteria (PGPR) that form a symbiotic 
relationship with host plants (1,2). PGPR strains 
exhibit beneficial effects on plants by fixing nitrogen, 

producing siderophores and solubilizing essential 
elements in soil (1,2). In addition, they exert indirect 
beneficial effects by preventing growth or activity 
of phytopathogens and inducing systemic resistance 
against plant diseases (2). They produce different 
types of secondary metabolites including fungicides 
and hydrogen cyanide, which protect roots against 
pathogens (3). Furthermore, some strains of P. 
fluorescens participate in biodegradation of xenobiotic 
compounds and bioremediation of heavy metals (3,4).
 P. fluorescens is considered to be an opportunistic 
pathogen for humans (5). It has been linked with a 
number of human diseases including nosocomial 
infections and bacterial cystitis. In addition, P. 
fluorescens has been isolated from a large number of 
respiratory specimens taken from hospital patients, 
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although its association with pulmonary infections is not 
well understood (5). Furthermore, Sutton CL et al. (5) 
reported that more than half of the patients with Crohn's 
disease develop antibodies against P. fluorescens. P. 
fluorescens can also cause blood transfusion-related 
bacteraemia and catheter-associated bacteraemia 
amongst the immunosuppressed patients (6). Nosocomial 
outbreaks of bacteraemia due to P. fluorescens have been 
reported (5). However, the information on pathogenesis 
mechanism of P. fluorescens is very limited.
 Flagella-mediated motility and chemotaxis of 
P. fluorescens towards different nutrients present in 
root exudates or the rhizosphere play a crucial role in 
establishing a symbiotic relationship with plants (2,7-
9). Previous mutagenesis studies demonstrated that 
chemotaxis is important for the root-tip colonization 
by P. fluorescens (9-11). Furthermore, motility and 
chemotaxis are important virulence factors of many 
pathogenic bacteria, and it is likely that they play 
an important role in P. fluorescens pathogenesis in 
humans. The environmental chemical signals are sensed 
by bacterial membrane-embedded methyl-accepting 
chemotaxis protein (MCP) receptors (12). Upon binding 
of the signal molecule, MCPs trigger a chemotactic 
signaling cascade and control bacterial movement 
towards or away from chemoattractants and repellents, 
respectively (12).
 Of the 37 putative MCPs identified in the genome of 
P. fluorescens Pf0-1 to date, ligands are known for only 
seven. The MCPs termed chemotactic transducers of 
amino acids (CtaB, CtaB, and CtaC) sense amino acids 
as attractants (13). MCPs Pfl01_3768 and Pfl01_0728 
were identified as receptors for L-malate, succinate, 
and fumarate (14). Finally, the chemoreceptor for 
2-nitrobenzoate NbaY was shown to be involved in the 
metabolism of aromatic compounds (15).
 The periplasmic sensing domain of CtaB has been 
shown to recognize a broad range of amino acids (16 in 
total) (13). The structural basis of how CtaB recognizes 
its ligands and transmits the signal across the membrane 
in response to ligand binding is yet to be determined. 
Data on bacterial receptors that are structurally and 
functionally homologous to CtaB is limited. The 
presence of the conserved consensus motif DXXX(R/
K)XWYXXA (16) and the Cache (calcium channels 
and chemotaxis receptors) motif (residues 107-185) 
(17) in the amino acid sequence of CtaB allows us to 
putatively assign it to the family of receptor proteins 
with a periplasmic tandem Per-Arnt-Sim (PAS) 
sensing domain (PTPSD) that recognises amino acids 
directly. The crystal structures of two different PTPSDs 
with specificity to amino acids have been recently 
reported, providing first insights into the structural 
basis of their ligand specificity. Analysis of PTPSD of 
Campylobacter jejuni Tlp3 in complex with isoleucine 
(PDB code 4xmr) revealed a strongly hydrophobic 
pocket accommodating the aliphatic side chain of the 

ligand, consistent with Tlp3's preference for isoleucine 
and, likely, other branched amino acids such as valine 
and leucine (16). The crystal structure of PTPSD of V. 
cholerae Mcp37 has been reported in complex with 
alanine and serine (PDB codes 3c8c and 5ave (18)). 
CtaB PTPSD shares 25 and 29% sequence identity with 
PTPSDs of Tlp3 and Mcp37, respectively. This protein 
provides an example of a PTPSD-type receptor with 
an extremely broad substrate specificity. To elucidate 
the structural basis of the CtaB's ligand promiscuity, 
we have initiated X-ray crystallographic studies on 
recombinant CtaB PTPSD. Here, we report its cloning, 
refolding, purification and crystallization together with 
the analysis of the diffraction data.

2. Materials and Methods

2.1. Cloning and overexpression of CtaB PTPSD as 
inclusion bodies (IBs)

The membrane topology and the boundaries the 
periplasmic sensing domain of CtaB (CtaB PTPSD, 
residues 32-272) from P. fluorescens Pf0-1 (UniProt ID 
Q3KK38) were predicted by TOPCONS server (http://
topcons.net/) (19) (Figure 1). The sequence encoding 
CtaB PTPSD was codon optimized for expression 
in Escherichia coli, synthesized and ligated into the 
pET151/D-TOPO vector (Invitrogen) by Genscript to 
generate an expression vector that harbors an N-terminal 
His6 tag followed by a TEV protease cleavage site. 
The expression vector was introduced into E. coli 
BL21 (DE3) (Novagen) and cells were grown in 
Luria-Bertani medium supplemented with 50 µg/mL 
ampicillin to an OD600 of 0.6 at 310 K. Overexpression 
of CtaB PTPSD was induced with 0.5 mM isopropyl-
b-D-1-thiogalactopyranoside (Thermo Scientific) and 
growth was continued for 3.5 h at 210 K. The cells 
were harvested by centrifugation at 6,000 g for 15 min 
at 277 K. The cells were resuspended in buffer A (10 
mM Tris-HCl buffer pH 8.0 and 200 mM NaCl), lyzed 
by sonication and centrifuged at 10,000 g for 30 min 
at 277 K. SDS-PAGE gel electrophoresis of clarified 
supernatant and pellet confirmed that CtaB PTPSD 
expressed in inclusion bodies (IBs).

2.2. Solubilization of IBs, protein refolding and 
purification

Purification of CtaB PTPSD from IBs was performed 
following the procedure described earlier with some 
modifications (20). Briefly, IBs were washed two 
times with buffer B (10 mM Tris-HCl pH 8.0, 0.2 
mM phenylmethanesulfonyl fluoride (PMSF, Sigma-
Aldrich), 1% Triton X-100 (Sigma-Aldrich)) and once 
in buffer C (10 mM Tris-HCl pH 8.0, 0.2 mM PMSF), 
and centrifuged at 10,000 g for 30 min to purify IBs. 
The IBs were then solubilized in buffer D (10 mM Tris/
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2.3. Crystallization

Prior to crystallization, the protein sample was 
concentrated to 10 mg/mL, centrifuged for 20 min 
at 13,000 g and transferred into a clean tube. The 
preliminary crystallization screening was carried out 
by the hanging-drop vapour-diffusion method using an 
automated Phoenix crystallization robot (Art Robbins 
Instruments). Commercial crystallization screens 
(Crystal Screen, Index Screen HT, The JCSG Screen 
and PEG/Ion Screen HT (Hampton Research, Laguna 
Niguel, CA) were used. Crystals appeared after one day 
in the condition No. 54 of The JCSG Screen consisting 
of 0.2 M zinc acetate, 20% (w/v) polyethylene glycol 
(PEG) 3000 and 0.1 M imidazole pH 8.0. Refinement 
to improve the quality of the crystals (Figure 3) resulted 
in the final optimized condition that contained 14% (w/
v) PEG 3000, 0.15 M zinc acetate sulfate and 0.1 M 
imidazole pH 7.5.

2.4. Data collection and processing

Prior to data collection, crystals were briefly soaked 
in a cryoprotectant solution consisting of 0.18 M zinc 
acetate, 20% (w/v) PEG 3000, 0.1 M imidazole pH 
7.5, 10 % (v/v) glycerol, and cryocooled by plunging 
in liquid nitrogen. An X-ray diffraction data set was 
collected from a single crystal on the MX1 beamline of 
the Australian Synchrotron (AS). A total of 420 images 
(Figure 4) were collected using a 0.5º oscillation width. 
The data were processed and scaled using iMosflm (22) 
and AIMLESS from the CCP4 suite (23). The statistics 
of data collection and processing are summarized in 
Table 1.

3. Results and Discussion

Recombinant P. fluorescens CtaB PTPSD was expressed 

HCl pH 8.0, 8 M urea (Amresco), 10 mM dithiothreitol 
(DTT, Sigma-Aldrich), 0.2 mM PMSF) under gentle 
stirring for 30 min at 277 K. The protein solution was 
then clarified by centrifugation at 30,000 g for 30 min 
at 277 K. Protein concentration was determined using 
the Bradford assay (21). CtaB PTPSD was refolded by 
diluting 100 mg denatured protein into 250 mL buffer 
E (3 M urea, 10 mM Tris-HCl pH 8.0, 0.4 M L-arginine 
monohydrochloride) followed by a 48 h incubation at 
227 K with continuous mixing. The sample was then 
dialyzed against 7 L buffer A for overnight at 277 K. 
NaCl and imidazole were then added to the protein 
solution to final concentrations of 500 and 15 mM, 
respectively. The protein sample was then loaded onto 
a 5 mL HiTrap Chelating HP column (GE Healthcare) 
pre-equilibrated with buffer F (10 mM Tris-HCl pH 8.0, 
500 mM NaCl, 15 mM imidazole). The column was 
washed with 20 column volumes of buffer F containing 
20 mM imidazole to remove unbound proteins, and 
the protein was eluted with buffer F supplemented 
with 500 mM imidazole. The His6-tag was removed 
by overnight incubation with a His6-TEV protease at 
277 K while dialyzing the sample against buffer G [50 
mM Tris-HCl pH 8.0, 2 mM dithiothreitol, 200 mM 
NaCl, 1% (v/v) glycerol]. NaCl and imidazole were 
then added to the sample to final concentrations of 500 
and 15 mM, respectively. The TEV protease and the 
uncleaved protein were removed on a HiTrap Chelating 
HP column. The flowthrough was concentrated to 2 
mL in an Amicon Ultracel 10 kDa cutoff concentrator 
and purified further by passing through a Superdex 200 
HiLoad 26/60 gel-filtration column (GE Healthcare) 
equilibrated with buffer A. The protein purity was 
estimated to be greater than 95% by the SDS-PAGE 
analysis (Figure 2). The oligomeric state of VfcAperi was 
calculated using a calibration plot of log MW versus 
the retention volume [Vretention (mL) = 549.3 – 73.9 × 
logMW] available at the EMBL Protein Expression and 
Purification Core Facility website (http://www.embl.
de/pepcore/pepcore_services/protein_purification/
chromatography/hiload26-60_superdex200/index.
html).

Figure 1. The predicted membrane topology of P. 
fluorescens CtaB and the boundaries of the periplasmic 
sensory domain CtaB PTPSD characterized in this study.

Figure 2. Coomassie Blue-stained 15% SDS-PAGE gel of 
recombinant CtaB PTPSD.

Figure 3. A putative crystal of CtaB PTPSD.
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with a cleavable N-terminal His6-tag from the pET151/
D-TOPO plasmid in E. coli BL21 (DE3) upon induction 
of T7 polymerase. The protein was found in inclusion 
bodies (IBs). It was refolded from IBs and purified to > 
95% electrophoretic homogeneity based on Coomassie 
Blue staining of SDS-PAGE gels (Figure 2). The 
protein migrated as a single band on SDS-PAGE with 
a molecular weight of ~25 kDa. This value was close 
to molecular weight (26.7 kDa) calculated from the 
amino acid sequence. When subjected to size-exclusion 
chromatography, the protein eluted as a single peak 
with a retention volume of 225 mL corresponding to 
an approximate molecular weight of 24.5 kDa, which 
suggested that P. fluorescens CtaB PTPSD is a monomer 
in solution under the tested buffer conditions. 
 An X-ray diffraction data set was collected from 
a cryo-cooled crystal of CtaB PTPSD to 2.2 Å using 
the AS facility (Figure 4). Processing of the diffraction 
data using the autoindexing routine in iMosflm and 
the analysis of systematic absences implemented in 

AIMLESS suggested that the crystals have the P212121 
symmetry, with unit cell parameters a = 34.5, b = 108.9, 
c = 134.6 Å. The average I/σ(I) value was 16.2 for all 
reflections (resolution range 35.0-2.2 Å) and 4.9 in the 
highest resolution shell (2.3-2.2 Å). A total of 216,640 
measurements were made of 26,718 independent 
reflections. Data processing gave a Rpim of 0.027 for 
intensities (0.157 in the resolution shell 2.3-2.2 Å), and 
these data were 99.9% complete (100% completeness 
in the highest resolution shell).
 Under the assumption that there are two molecules 
of CtaB PTPSD in the asymmetric unit, the calculated 
Matthews coefficient (24) was 2.64 Å3 Da-1 and the 
corresponding solvent content was approximately 53%. 
Analysis of the self-rotation function computed using 
POLARRFN (23) with diffraction data in the resolution 
range 30-6 Å3 and an integration radius of 16 Å revealed 
the presence of a twofold symmetry axis (κ = 180°) 
represented by a peak at (φ = 44.7°, ω = 0°) with a 
height of 4σ (Figure 5). Together, this analysis suggests 
that the CtaB PTPSD crystals contain two molecules 
per unit cell. Phasing by molecular replacement has 
not been possible due to low sequence similarity with 
the known structures deposited in the RCSB PDB 
database. A search for heavy-atom derivatives with the 
aim to solve the structure using multiple isomorphous 
replacement and/or multi-wavelength anomalous 
dispersion methods is in progress. 

We have previously observed that expression of 
periplasmic sensory domains of bacterial MCP receptors 
in E. coli often results in their deposition predominantly 
in inclusion bodies (16,20,25-27). The recombinant 
ligand sensing domain of P. fluorescens CtaB is another 
example of a molecule of this type that required 
extraction from IBs and refolding. We succeeded in 
producing folded protein and high-quality crystals by 
following the refolding procedure that we have recently 
developed (25,26). The purified protein was monomeric 
in solution, in line with previous studies that showed 
PTPSDs from other receptors to be also monomeric in 
solution (16,20,25-27).

Figure 4. A representative 0.5° oscillation image of the data 
collected using an ADSC Quantum 210r CCD detector on 
the MX1 station of the Australian Synchrotron, Victoria, 
Australia. A magnified rectangle shows diffraction spots 
beyond 2.2 Å resolution.

Table 1. Data collection and processing

Diffraction source
Wavelength (Å)
Temperature (K)
Detector
Rotation range per image (°)
Total rotation range (°)
Exposure time per image (s)
Space group
a, b, c (Å) 
α, β, γ (°) 
Mosaicity (°) 
Resolution range (Å)
Total No. of reflections
No. of unique reflections
Completeness (%)
Redundancy
[I/σ(I)]
Rpim. 
Overall B factor from Wilson 
plot (Å2) 

MX1 beamline, Australian Synchrotron
1.0
100
ADSC Quantum 210r CCD
0.5
420
1
P212121

34.5, 108.9, 134.6
90, 90, 90
0.6
35.0-2.2 (2.3-2.2)
216,640 (31,679)
26,718 (3,862)
100 (100)
8.1 (8.2)
16.2 (4.9)
0.027 (0.157)
41.4

Values for the outer shell are given in parentheses.

Figure 5. The self-rotation function for CtaB PTPSD (κ = 
180°). The noncrystallographic twofold axis is marked by an 
arrow.
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 X-ray crystallographic analysis of CtaB PTPSD in 
complex with various amino acid ligands is expected to 
provide an explanation of the structural basis behind the 
broad ligand specificity of this receptor. We note that 
the crystal structure of PTPSD of another ‘promiscuous' 
amino acid MCP receptor, V. cholerae Mcp37, has 
been recently reported (18). However, only the crystal 
complexes of that protein with alanine and serine have 
been characterised, which makes it difficult to predict 
how larger amino acids can fit into its relatively small 
ligand-binding pocket. 
 The results presented here are important because they 
lay the foundation for future systematic structural studies 
that will be able to address the fundamental biological 
question of how this receptor, and similar receptors in 
other important bacteria, sense environmental cues, how 
they transduce the signal across the membrane and thus 
control bacterial movement.
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