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1. Introduction

Influenza, commonly known as flu, is a contagious 
respiratory illness caused by influenza viruses (1,2). 
Influenza virus spreads through air from coughs or 
sneezes as well as by touching surfaces contaminated 
with influenza virus and then touching mouths or eyes 
(3,4). The strong infectivity and annual outbreak of flu 
are estimated to result in approximately 3 to 5 million 
annual cases of severe illness and approximately 250,000 
to 500,000 deaths worldwide (1). The resultant high 
levels of worker/school absenteeism and productivity 
losses lead to direct costs of lost productivity and 
associated medical treatment and indirect costs of 
preventative measures. In the U.S., flu is responsible 

for a total cost of over $10 billion per year, and a future 
flu pandemic is estimated to cost hundreds of billions 
of dollars in direct and indirect costs (5). Clinics and 
hospitals are overwhelmed during peak illness periods. 
The impeding of transmission routes, especially 
via school closures, and influenza immunizations 
effectively prevent the propagation of the flu (6-8). To 
help governments, hospitals, clinics, pharmaceutical 
companies, and others prepare for flu outbreaks 
efficiently and restrict routes of transmission in a timely 
manner, we need an accurate time-series model to predict 
influenza outbreaks.
 Time-series models can be categorized into 3 types 
by using different features. The first type of model is 
an autoregressive model, which uses the numbers of 
patients in the past as features ("Xs") and forecasts the 
number of patients in the future as the response (y). 
Typical examples include the Auto-Regressive Integrated 
Moving Average (ARIMA) model and the Vector Auto-
Regression model (VAR). The second type of model uses 
other parameters (such as temperature, humidity, etc.) 
instead of past flu data as features for regression models 
(e.g., linear regression, random forest, etc.). The famous 
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example is "Google Flu Trends", which used search 
engine query data (9) as features and a linear regression 
model. The third type of model is a combination of the 
first and second types. It uses the numbers of flu patients 
in the past as features (as in the first type) and regression 
models (as in the second type) (10).  In this study, 
we adopted the third model type and tried 6 different 
models with hyperparameter adjustments, including: 
Auto-Regressive Integrated Moving Average (ARIMA), 
Support Vector Regression (SVR), Random Forest (RF), 
Gradient Boosting (GB), Artificial Neural Network 
(ANN), and Long Short Term Memory (LSTM). To the 
best of our knowledge, this is the first time LSTM has 
been used to predict influenza outbreaks.
 Time-series models with different time lags usually 
result in different levels of accuracy. The selection of 
time lags can be essential to improve the accuracy of 
predications. However, past studies simply adopted 
a time lag for models without comparing or selecting 
an appropriate number of time lags, which could 
make the model misunderstand past outbreak patterns. 
Therefore, in this study, we investigated the performance 
of 6 different time lags in each of the models we 
tried: 2 weeks (approximately 0.5 month), 4 weeks 
(approximately 1 month), 9 weeks (approximately 2 
months), 13 weeks (approximately 3 months), 26 weeks 
(approximately 6 months), and 52 weeks (approximately 
12 months). We hoped we would find some clues from 
our studies for future studies, which leverage machine 
learning (ML) and deep learning (DL) models for 
predicting epidemic outbreaks.

2. Methodology

2.1. Data

We collected the U.S. flu season data from the "FluView" 
Portal of the website for the Centers for Disease 
Control and Prevention (CDC) (11). The data are posted 
"weekly" with "not available" (N/A) values from the 21st 
week to the 39th week from 1998, 1999, 2000, 2001, and 
2002. Therefore, we only used the U.S. Flu Season Data 
without any N/As, i.e. the U.S. Flu Season Data from the 
40th week of 2002 to the 30th week of 2017. 
 To remove any possible variations in populations, 
we adopted the Influenza-Like Illness (ILI) rates as the 
response (y) of our models.

      The number of ILI
        ILI rate = 
   Total number of Illness
 
Figure 1(a) illustrates the raw data. The Y-axis represents 
the weekly ILI rate, and the X-axis represents the time 
series. The seasonality appears obvious, except in 2009 
when swine flu occurred. The swine flu (also called the 
2009 flu pandemic) was an influenza pandemic, and the 

second of two pandemics involving the H1N1 influenza 
virus (the first was the 1918 flu pandemic), albeit a new 
variety. 
 We split the data into two parts: the first 2/3 was the 
training set and the last 1/3 was the testing set, as shown 
in Figure 1(b).

2.2. Models

Table 1 illustrates the models, programming languages, 
libraries, and hyperparameter adjustments we used in this 
study.
 We trained the ARIMA model in R Programming 
Language (version 3.4.1) and the "forecast" package 
(version 8.1) (12). The function of "auto.arima" in 
the "forecast" package of R automatically performs a 
stepwise regression and selects the best hyperparameters 
based on the Bayesian Inference Criteria (BIC). For 
SVR, we applied the caret package (Version 6.0-76) in R. 
For RF and GB, we used Python (Version 3.6.0) and the 
Scikit-Learn package (Version 0.18.1) with a grid search. 
For ANN and LSTM, we used Python and the Keras 
package (Version 2.0.4) based on Tensorflow (Version 
1.1.0) and adopted an "early-stopping" algorithm with a 
"patience" of 100 epochs (for a total of 1000 epochs).

2.3. Metrics

We compared different models and different time lags 
using the Mean Absolute Percentage Error (MAPE) and 
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Figure 1. The U.S. flu season data from the 40th week of 
2002 to the 30th week of 2017. (a). The Y-axis represents the 
weekly ILI rate, and the X-axis represents the time series. (b). 
The dashed line is the first 2/3 used for the training set, and 
the solid line is the last 1/3 used for the testing set. The Y-axis 
represents the weekly ILI rate, and the X-axis represents the 
time series.
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(approximately 2 months), 13 weeks (approximately 
3 months), 26 weeks (around half a year), and 52 
weeks(approximately 1 year)for model training and 
compared the results.

2.4.2. First-order fifferences

Some previous studies found that first-order differences 
helped improve the results of the prediction models for 
influenza data (13). We also included the first-order 
differences as a part of the feature spaces. 
 In this study, we reviewed a maximum of 52 weeks. 
In the case of the time lag of 52 weeks, we used (I) the 
ILI rate of the current week, (II) the ILI rates of the past 
52 weeks, and (III) the 52 first-order differences. In total, 

Root Mean Squared Error (RMSE) as Key Performance 
Indicators (KPIs).

where At is the actual value and Ft is the forecasted 
value.
 Figure 2 illustrates the histogram of the weekly ILI 
rates of the U.S. flu data. In our opinion, comparing 
models using MAPEs reflects the difference based on 
the median, and comparing models using RMSE is based 
on means. In this study, the histogram is right skewed. 
Furthermore, we performed the Kolmogorov-Smirnov 
Test to examine the data distribution, and the p-value is 
< 0.001. Therefore, we concluded that the distribution is 
a non-normal distribution, and we therefore regard the 
MAPE as the first KPI and the RMSE as an assistant KPI 
in this study.

2.4. Feature space

2.4.1. Time lags

Influenza seasonality is an annually recurring time 
period characterized by the prevalence of outbreaks 
of influenza. Therefore, in this study, we reviewed 
a maximum of 52 weeks (approximately 1 year). 
We tried using time lags of 2 weeks (around half a 
month), 4 weeks (approximately 1 month), 9 weeks 

Table 1. The models, programming languages, libraries, and hyperparameter adjustments we used in this study

Models

ARIMA

SVR

RF

GB

ANN

LSTM

Programming Languages

R (Version 3.4.1) 

R (Version 3.4.1) 

Python (Version 3.6.0) 

Python (Version 3.6.0) 

Python (Version 3.6.0) 

Python (Version 3.6.0) 

Programming Libraries

Forecast (Version 8.1) 

Caret (Version 6.0-76) 

Scikit Learn (Version 0.18.1) 

Scikit Learn (Version 0.18.1) 

Keras (Version 2.0.4)
Tensorflow (Version 1.1.0) 

Keras (Version 2.0.4)
Tensorflow (Version 1.1.0) 

Hyperparameter Adjustment

● auto.arima

● cross validation (n = 3)

● cross validation (n = 3)
● grid search
     ● n_estimators
     ● max_features
     ● max_depth

● cross validation (n = 3)
● grid search 
     ● learning rate
     ● subsample
     ● n_estimators
     ● max_features
     ● max_depth

● different layers (up to 5 layers) 
● with/without dropout,
● with/without regularization
● with/without batch normalization 

● different layers (up to 10 layers) 
● with/without dropout,
● with/without regularization
● with/without batch normalization 

Figure 2. The histogram of weekly ILI Rates from U.S. 
flu data. The histogram is right skewed. Furthermore, we 
performed the Kolmogorov-Smirnov Test to examine the 
data distribution. The p-value is < 0.001, and we therefore 
concluded that the distribution is a non-normal distribution.
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we have 105 predictors (I + II + III) for use as feature 
spaces. Since we are unable to calculate the first-order 
differences for the first 52 rows (the first 52 weeks), we 
dropped these data. Table 2 illustrates the pretreatment of 
the source data. 
 In the case of the time lag of 52 weeks, we had 105 
predictors and had to drop the first 52 rows (the first 52 
weeks), since we are unable to calculate the first-order 
differences for the first 52 rows (the first 52 weeks). 
Similarly, in the case of the time lag of 2, 4, 9, 13, 26 
weeks, we had 5, 9, 19, 27, 53 predictors and had to 
dropped the first 2, 4, 9, 13, 26 rows (the first 2, 4, 9, 
13, 26 weeks) since we are unable to calculate the first-
order differences for the first 2, 4, 9, 13, 26 rows (the 
first 2, 4, 9, 13, 26 weeks). As a result, the models with 
fewer time lags could have more training data, which 
was considered unfair when we compared the predicting 
accuracy of the models since models (especially DL 
models) with more training data usually brought better 
accuracy (14). To fairly compare the predicting accuracy 
of adopting different time lags, we uniformly removed 
the first 52 rows (the first 52 weeks) from the training set 
of all the models.

3. Results

3.1. ARIMA, SVR, RF, GB, and ANN

Table 3(a) and Table 3(b) present the MAPE and RMSE 
of ARIMA, SVR, RF, GB, ANN. When increasing the 
time lags in the ARIMA models, we found obvious 
decreases in the MAPE and RMSE. We achieved the 
lowest MAPE (8.36%) and the lowest RMSE (0.00364) 
when using the time lag of 52 weeks, and we found a 
similar phenomenon when performing the ANN models, 
where we achieved the lowest MAPE (5.79%) and the 
lowest RMSE (0.002411) when using the time lag of 52 
weeks. Regarding the ML models (i.e., SVR, RF, and 
GB), all of them reached their lowest MAPE (6.75%, 
6.75%, 6.58%, respectively) when we used the time 
lag of 4 weeks. The SVR reached the lowest RMSE 
(0.002271) when we used the time lag of 52 weeks. The 
RF reached the lowest RMSE (0.002417) when we used 
the time lag of 2 weeks. The GB reached the lowest 
RMSE (0.002351) when we used the time lag of 4 
weeks. The cells with the gray background in Table 3(a) 
are the lowest MAPEs in the ARIMA, SVR, RF, GB, and 
ANN models, while the cells with the gray background 
in Table 3(b) are the lowest RMSEs in the ARIMA, SVR, 
RF, GB, and ANN models.
 Figure 3(a), 3(b), 3(c), 3(d), and 3(e) compares the 
actual and the predicted outcomes when we used the 
time lag of 52 weeks in ARIMA, the time lag of 4 weeks 
in SVR, the time lag of 4 weeks in RF, the time lag of 4 
weeks in GB, and the time lag of 52 weeks in ANN. All 
the time lags we adopted in Figure 3 achieved the lowest 
MAPE in the respective model.
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3.2. LSTM results

We performed a variety of LSTM models: 3 layers, 4 
layers, 4 layers with dropout, 4 layers with regularization, 
5 layers, 5 layers with regularization, 6 layers with 
regularization, and 10 layers with regularization. Table 

4(a) and Table 4(b) present the MAPEs and RMSEs of 
all the LSTM models with different hyperparameters, as 
previously mentioned. All the LSTM models achieved 
the lowest MAPEs (6.71%, 5.44%, 6.27%, 5.45%, 6.28%, 
5.53%, 5.46%, and 5.72%) when we adopted a time lag 
of 52 weeks. The cells with the gray background are 

Figure 3. The actual and the predicted outcomes when we use the time lag of 52 weeks in ARIMA, the time lag of 4 weeks 
in SVR, the time lag of 4 weeks in RF, the time lag of 4 weeks in GB, the time lag of 52 weeks in ANN, and the time lag of 
52 weeks in the LSTM model (4 layers). All the time lags we adopted achieved the lowest MAPE in ARIMA, SVR, RF, GB, and 
ANN, respectively. The X-axis represents the time series (from the 1st week of 2013 to the 30th week of 2017) of the testing set. The 
Y-axis represents the weekly ILI rates.

Table 3(a). The MAPEs of the testing set for ARIMA, SVR, RF, GB, and ANN. When performing the ARIMA models, we 
achieved the lowest MAPE (8.36%) when using the time lag of 52 weeks. We achieved the lowest MAPE (6.75%, 6.75%, 
and 6.58%) of all the ML models when we used the time lag of 4 weeks. When performing the ANN models, we achieved the 
lowest MAPE (5.79%) when using the time lag of 52 weeks. The cells with the gray background are the lowest MAPEs in the 
ARIMA, SVR, RF, GB, and ANN models

Models

Time lags (Weeks)

ARIMA MAPE (%)
SVR MAPE (%)
RF MAPE (%)
GB MAPE (%)
ANN MAPE (%)

2

13.46
  6.76
  7.36
  6.96
  6.65

4

11.90
  6.75
  6.75
  6.58
  6.50

9

9.14
6.99
6.95
7.24
6.32

13

  8.72
  6.90
  7.82
  6.92
  6.34

26

  8.58
  6.85
  7.07
  7.67
  6.16

52

  8.36
  6.86
  6.92
  7.02
  5.79

Table 3(b). The RMSEs of the testing set for ARIMA, SVR, RF, GB, ANN. The ARIMA reached the lowest RMSE (0.003285) 
when we used the time lag of 13 weeks. The SVR reached the lowest RMSE (0.002271) when we used the time lag of 52 
weeks. The RF reached the lowest RMSE (0.002417) when we used the time lag of 2 weeks. The GB reached the lowest RMSE 
(0.002351) when we used the time lag of 4 weeks. The ANN reached the lowest RMSE (0.002411) when we used the time lag 
of 4 weeks. The cells with the gray background are the lowest RMSEs in the ARIMA, SVR, RF, GB, and ANN models

Models

Time lags (Weeks)

ARIMA RMSE
SVR RMSE
RF RMSE
GB RMSE
ANN RMSE

2

0.004437
0.002558
0.002417
0.002378
0.002590

4

0.004099
0.002554
0.002522
0.002351
0.002552

9

0.003665
0.002536
0.002582
0.002652
0.002574

13

0.003285
0.002526
0.002692
0.002586
0.002549

26

0.003428
0.002514
0.002554
0.002732
0.002516

52

0.003642
0.002271
0.002591
0.002511
0.002411
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the lowest MAPEs in the different LSTM models. All 
the LSTM models achieved the lowest MAPEs when 
we adopted a time lag of 52 weeks, except the 4 layers 
with regularization and the 5 layers with regularization, 
which reached their lowest MAPEs when we used a time 
lag of 13 weeks. The cells with the gray background 
are the lowest RMSEs (0.002102, 0.002431, 0.002352, 
0.002499, 0.002099, 0.002439, 0.002438, and 0.002274) 
in the different LSTM models.
 Figure 3(f) compares the actual and the predicted 
outcomes when we used the time lag of 52 weeks in the 
LSTM model (4 layers). The X-axis represents the time 
series (from the 1st week of 2013 to the 30th week of 
2017) of the testing set. The Y-axis represents the weekly 
ILI rates

4. Discussion

4.1. Time lag selection in ARIMA, SVR, RF, GB, and 
ANN

The MAPEs of  the  ARIMA model  decreased 
significantly (from 13.46% to 8.36%) when we increased 
the time lags from 2 weeks to 52 weeks. (Figure 4) The 
probable explanation for this phenomenon is that ARIMA 
is an autoregressive model focusing on seasonality. The 

closer the feature spaces to a complete seasonality, the 
lower the MAPE will be. In other words, when training 
ARIMAs for time-series prediction, at the least, we need 
a complete duration. Similar to those of the ARIMA 
models, the MAPEs of the ANN models also decreased 
(from 13.46% to 8.36%) when we increased the time lag 
from 2 weeks to 52 weeks. (Figure 4)
 Regarding the ML models (SVR, RF, and GB), the 
MAPEs were always approximately 7%, with almost 
no changes as we increased the time lags (Figure 4), 
likely because the ML models usually cannot learn 
the seasonality but can learn the trend of the data by 
inputting the first-order differences into the training and 
testing.

4.2. With and without regularization

We calculated the standard deviations of the MAPEs 
of the LSTM models of 3, 4, and 5 layers without 
regularization and of 4, 5, 6, and 10 layers with 
regularization when using the time lags of 2, 4, 9,13, 
26, and 52 weeks. (Table 5) We found the standard 
deviations of the MAPEs of the LSTM models with 
regularization were less than those of the LSTM models 
without regularization when we used almost all the time 
lags except the time lag of 2 weeks. (Figure 5a) The 

Table 4(a). The MAPEs of all the LSTM models: 3 layers, 4 layers, 4 layers with dropout, 4 layers with regularization, 5 
layers, 5 layers with regularization, 6 layers with regularization, and 10 layers with regularization. All the LSTM models 
achieved the lowest MAPEs (6.71%, 5.44%, 6.27%, 5.45%, 6.28%, 5.53%, 5.46%, and 5.72%) when we adopted a time lag 
of 52 weeks. The cells with the gray background are the lowest MAPEs in the different LSTM models

LSTM
Structures

Time lags

3 layers MAPE (%)
4 layers MAPE (%)
4 layers with dropout MAPE (%)
4 layers with regularization MAPE (%)
5 layers MAPE (%)
5 layers with regularization MAPE (%)
6 layers with regularization MAPE (%)
10 layers with regularization MAPE (%)
Mean MAPE of Different Time Lags MAPE (%)

2

6.80
6.69
7.62
6.74
6.85
6.56
6.61
6.46
6.79

4

7.00
6.42
7.17
6.32
6.61
6.38
6.52
6.42
6.61

9

7.00
6.28
7.26
6.22
7.20
6.11
6.20
5.98
6.53

13

6.87
6.17
7.18
6.09
6.64
6.01
6.12
5.90
6.37

26

6.93
6.06
6.56
6.07
6.53
5.91
5.91
5.75
6.22

52

6.71
5.44
6.27
5.45
6.28
5.53
5.46
5.72
5.86

Table 4(b). The RMSEs of all the LSTM models: 3 layers, 4 layers, 4 layers with dropout, 4 layers with regularization, 5 
layers, 5 layers with regularization, 6 layers with regularization, and 10 layers with regularization. All the LSTM models 
achieved the lowest MAPEs when we adopted a time lag of 52 weeks, except for the 4 layers with regularization and 5 
layers with regularization, which reached their lowest MAPEs when we used a time lag of 13 weeks. The cells with the gray 
background are the lowest RMSEs (0.002102, 0.002431, 0.002352, 0.002499, 0.002099, 0.002439, 0.002438, 0.002274) in the 
different LSTM models

LSTM
Structures

Time lags

3 layers RMSE
4 layers RMSE
4 layers with dropout RMSE
4 layers with regularization RMSE
5 layers RMSE
5 layers with regularization RMSE
6 layers with regularization RMSE
10 layers with regularization RMSE
Mean MAPE of Different Time Lags

2

0.002534
0.002611
0.002528
0.002621
0.002504
0.002663
0.002593
0.002460
0.002564

4

0.002535
0.002581
0.002517
0.002563
0.002486
0.002549
0.002561
0.002390
0.002523

9

0.002497
0.002570
0.002518
0.002505
0.002458
0.002556
0.002503
0.002312
0.002490

13

0.002490
0.002572
0.002499
0.002499
0.002434
0.002439
0.002479
0.002325
0.002467

26

0.002411
0.002516
0.002462
0.002632
0.002408
0.002590
0.002521
0.002296
0.002480

52

0.002102
0.002431
0.002352
0.002559
0.002099
0.002566
0.002438
0.002274
0.002353

Mean MAPE of Different
LSTM Structures

6.89
6.18
7.01
6.15
6.69
6.08
6.14
6.04

Mean MAPE of  Different 
LSTM Structures

0.002428
0.002547
0.002479
0.002563
0.002398
0.002560
0.002516
0.002343
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probable explanation for this finding is that regularization 
made the models more robust, and the robust models 
made the results (i.e., the MAPEs in this study) relatively 
stable. 
 Although we achieved the lowest MAPE (5.44%) 
when we used the 4-layer LSTM model without 

regularization, the gap between the MAPEs of the 
4-layer LSTM model without and with regularization 
is very limited (5.45% - 5.44% = 0.01%). Considering 
that unstable models may lead to poor accuracy if we 
changed the testing data, we recommend the use of the 
model with regularization for U.S. flu prediction.

Figure 4. The MAPEs and RMSEs of the ARIMA, SVR, RF, GB, and ANN models with the different time lags as the 
feature spaces.

Table 5. The standard deviations of the MAPEs of the LSTM models of 3, 4, and 5 layers without regularization and of 4, 5, 6, 
and 10 layers with regularization

LSTM
Structures

LSTM
Structures

Time lags

3 layers MAPE (%)
4 layers MAPE (%)
5 layers MAPE (%)

Standard Deviation of MAPEs of LSTM without 
Regularization of 3, 4, 5 Layers (%)

4 layers with regularization MAPE (%)
5 layers with regularization MAPE (%)
6 layers with regularization MAPE (%)
10 layers with regularization MAPE (%)

Standard Deviation of MAPEs of LSTM with 
Regularization of 4, 5, 6, 10 Layers MAPE (%)

2

6.80
6.69
6.85

0.08

6.74
6.56
6.61
6.46

0.12

4

7.00
6.42
6.61

0.30

6.32
6.38
6.52
6.42

0.08

9

7.00
6.28
7.20

0.49

6.22
6.11
6.20
5.98

0.11

13

6.87
6.17
6.64

0.36

6.09
6.01
6.12
5.90

0.10

26

6.93
6.06
6.53

0.44

6.07
5.91
5.91
5.75

0.13

52

6.71
5.44
6.28

0.64

5.45
5.53
5.46
5.72

0.12

Mean MAPE of Different
LSTM Structures

6.89
6.18
6.69

0.37

6.15
6.08
6.14
6.04

0.05
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4.3. LSTM structure (Layers)

After comparing the MAPEs of the LSTM models with 
and without regularization, we compared the different 
layers for the LSTM with regularization. (Figure 5b) We 
found extra layers (more than 4 layers) contributed little 
to improve the predicting accuracy. In other words, the 
LSTM models of 4 to 5 layers are considered sufficient 
for U.S. flu prediction.

4.4. Regularization and dropout

In addition to regularization, dropout can also usually 
help prevent overfitting and make the model more 
robust. We found that the MAPE of the LSTM models 
with regularization is obviously lower than those with 
dropout. "Dropout" randomly drops neurons, while 
"Regularization" selectively drops neurons. Although 
both suppress the number of neurons, in this study, 
the selective dropping performed much better than the 
random dropping.

4.5. Feature spaces

Comparing results, we found that the MAPE of ARIMA 
> MAPEs of SVR, RF, and GBM > MAPEs of ANN 
and LSTM. Although the different models have totally 
different algorithms, the increasing feature space and 

the increasing model parameters are considered other 
factors that impact the models’ accuracy. In ARIMA, 
we only have very limited feature spaces. The number 
of features is equal to the lag times, i.e., 3, 5, 10, 14, 27, 
or 53. In the ML models (SVR, RF, and GB), we added 
the first-order differences, including more information 
in the models, and we clearly found that the ML models 
with 105 features resulted in lower MAPEs. In DL 
models, we used 255 neurons in every LSTM layer, 
which included more parameters in the models. To 
achieve better epidemic predictions, more neurons can 
perform more linear and non-linear combinations of 
past data, create more "artificial" feature spaces, and 
provide better results.

4.6. More time lags

Why not adopt more time lags such as 104 weeks 
(around 2 years) or more? For one things, the models 
with the time lag of 52 weeks (around 1 year) have 
brought an accuracy of about 95% (i.e. 1 - MAPE). 
For another thing, we have to drop more training 
data (the first 104 rows) if we adopt a time lag of 104 
week or more. Although a longer time lag might help 
improve the accuracy, the less training data would also 
setback the accuracy. We suppose whether the accuracy 
would be better or worse depends on different data. 
However, a time lag including a complete periodicity is 

Figure 5. Comparison of LSTM Predicting Accuracy. (a). MAPEs of the LSTM models with and without regularization. The 
standard deviations of the MAPEs of the LSTM models with regularization were less than those of the LSTM models without 
regularization when we used almost all the time lags except the time lag of 2 weeks. (b). MAPEs of the LSTM models with different 
number of layers with regularization. (c). MAPEs of the LSTM models with Regularization and with Dropout.
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recommended for ARIMA, ANN, and LSTM.

5. Conclusion

In this study, we performed ARIMA, SVM, RF, GB, 
ANN, and LSTM models with different time lags (2, 4, 
9, 13, 26, 52 weeks) to forecast the weekly ILI rate of 
U.S. flu data. We found the ARIMA, ANN and LSTM 
models with a lag time of 52 weeks (i.e., the periodicity 
of the flu season) resulted in the best MAPEs, while 
SVR, RF, and GB performed with almost no changes 
when we used the time lags. We also found the MAPEs 
of the ML models (SVR, RF, and GB) with the first 
differences were lower than those of ARIMA, and 
the MAPEs of the deep learning models (ANN and 
LSTM) with multiple layers were lower than those 
of the ML models (SVR, RF, and GB). To the best of 
our knowledge, this is the first time LSTM has been 
used to predict influenza outbreaks. In all the models 
(with different model types, different hyperparameters, 
and different time lags), the LSTM model of 4 layers 
reached the lowest MAPE of 5.4%, and the LSTM 
model of 5 layers with regularization reached the 
lowest RMSE of 0.00210. Additionally, the LSTM 
models with 4 ~ 6 layers with regularization resulted 
in very low MAPEs of approximately 5.4 ~ 5.5%, and 
more than 6 layers contributed little to improving the 
predictive accuracy.
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