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1. Introduction

At high-alt i tude,  hypoxia together with other 
physiological stressors, including low temperature, 
ultraviolet rays and dehydration, may lead to a decline 
in cognitive function (1). Previous studies have proved 
that acute and chronic hypoxia exposure during high-
altitude expedition cause impairment in working 
memory, learning ability, attention and concentration. 
Recently, according to a previous study based on Tibet 
immigration population in China, two-year hypoxia 
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exposure may lead to a significant impairment in 
psychomotor function, i.e., prolonged simple and 
recognition reaction time (2). Psychomotor function is 
related to daily affairs like driving a car, attending to 
conversation, tracking and responding to a set of simple 
instructions, whose impairment may cast a negative 
influence upon the life quality and work efficiency of 
high-altitude immigrants. 
 Neuroimaging approaches including high resolution 
3D anatomical imaging and resting-state functional 
magnetic resonance imaging (rs-fMRI) have been 
employed to reveal the structural and functional basis 
of the hypoxia induced psychomotor impairment. 
Our previous work indicated the neuron loss and 
decreased regional homogeneity (ReHo) in several 
brain regions, i.e., putamen, superior temporal gyrus 
and anterior cingulate gyrus, may greatly contribute to 
the psychomotor impairment (2). ReHo was designed 
to reflect the similarity of the time series of a given 
voxel to those of its neighboring voxels, which may 
function as a potential sign of local neural functionality 
(3). Thus, we inferred that the alteration of regional 
neural activity may serve as a biomarker predicting 
the potential psychomotor impairment under high-
altitude exposure and reflecting the individual's 
vulnerability to hypoxia stress. In clinical practice, 
the potential biomarker may be referred by physicians 
when they gave advices to voluntary high-altitude 
immigrants. In parallel, it also helps to understand the 
pathophysiological processes associated with these 
neurobehavioral alterations and provide biologically-
relevant targets that can guide high-altitude impairment 
prevention and novel treatment development (4,5).
 Machine learning (ML) techniques can help 
to discover the potential biomarkers within the 
neuroimaging data. Compared with conventional 
univariate analyses, ML techniques are able to make 
regionally specific inferences about abnormalities 
in brain function associated with the impairment at 
the individual level (6). As a subfield of ML, pattern 
recognition approach uses computer-based techniques 
to automatically discover patterns in the data, which 
be utilized to identify relationships between patterns of 
brain activity and continuous measures of neurobehavior. 
In our case, ReHo data can be analyzed by pattern 
recognition approach to decode individual-level 
psychomotor measures (4). 
 The aim of this study was thus to use functional 
neuroimaging and pattern recognition approach to 
determine whether the change of psychomotor measures 
before and after high-altitude exposure could be decoded 
from patterns of ReHo alteration. This study has the 
potential to identify important biomarkers not only to 
help determine vulnerability to high-altitude hypoxia 
stress at the individual level, but also to pave the way 
forward for future studies using ML technique to predict 
other clinical outcomes in high-altitude immigrants.

2. Materials and Methods

2.1. Subjects

The protocol was approved by the Ethics Committee 
of the Medical Faculty of Fourth Military Medical 
University (registry no. KY20143344-1). All the 
studies were conducted in accordance with the ethical 
principles for medical research involving human 
subjects as defined in the Declaration of Helsinki. 
 All the subjects in this study come from Shaanxi-
Tibet immigrant cohort (STI cohort). The details about 
this cohort have been described previously (2). The STI 
cohort study was launched in 2014, included 69 young 
healthy high school graduates in Shaanxi who were 
admitted into Tibet University for four-year higher 
education. Baseline investigation, neurobehavioral 
and MRI measures were performed on July, 2014 in 
Xi'an (altitude 466 m), China. The information about 
high-altitude exposure history, medical history and 
sociodemographic status (parental education, vocation, 
socioeconomic status, etc.) were collected at baseline. 
The follow-up investigation and measures were 
performed on May 2016 in Lhasa (altitude 3,658 m). 
 Reaction time (RT) tasks were performed to 
measure the subject's psychomotor function before 
and after exposure, which consisted of visual simple 
reaction time (VSRT), audial simple reaction time 
(ASRT), visual recognition reaction time (VRRT) 
and audial recognition reaction time (ARRT). All the 
procedures were performed in the pattern of CNS Vital 
Signs (http://www.cnsvs.com/).

2.2. Rs-fMRI data acquisition and analysis

Rs-fMRI data were acquired with General Electric 
Discovery MR750 3.0T (General Electric Co. Ltd., 
Connecticut, USA) in Xijing Hospital of Air Force 
Medical University and the General Hospital of Tibet 
Military Region, respectively. The details about MRI 
scanning have been described previously (2). Data 
preprocessing was performed with the SPM8 and Data 
Processing Assistant for Resting-state fMRI Advanced 
(DPARSFA) tools as previously described (2,7). The 
KCC (Kendall's coefficient concordance) value between 
the time series of a given voxel and those of its nearest 
26 neighboring voxels was calculated in a voxel-wise 
method. Then, ReHo map for each individual was 
transformed to MNI coordinates and spatially smoothed 
(full width at half maximum [FWHM] = 8 mm). 
Finally, the ReHo map of each individual was divided 
by its own mean ReHo for standardization purposes.

2.3. Predictive models establishment

For each individual, the RT alteration during the 
exposure (RT post-exposure – RT pre-exposure) 
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mean of all voxel weights (absolute values) within this 
region were computed. Then, all the labelled regions 
were ranked according to the percentage of the total 
normalized weights they contributed in the pattern 
recognition modelling (4,9).

3. Results and Discussion

3.1. Subjects' characteristics

The average age of the subjects (M: 48; F: 21) was 18.2 
± 0.3 (range: 17.5 – 19.1) at baseline. In the 1st year of 
follow-up, the cumulative high-altitude exposure time 
of the subjects was 270.0 ± 7.4 d (range: 257 – 299 d), 
while in the second year, the exposure time increased 
to 280.8 ± 7.3 d (range: 268 – 314 d). No major health 
problems occurred during the follow-up. The detailed 
demographic and socioeconomic information of 
subjects were reported in our previous study (2).

3.2. Performance of the predictive model

The correlations between the predicted RT alterations 
and the actual values were displayed in Figure 1. 
Coefficient of determination (R2) and mean squared 
error (MSE) were calculated for each prediction to 
assess the goodness-of-fit. As a result, the R2 and MSE 
between the predicted and actual VSRT alteration were 
0.33 (p = 0.003) and 0.01 (p = 0.001), respectively; 
Similar results were obtained in the prediction of ASRT 
alteration, the R2 and MSE were 0.46 (p = 0.001) 
and 0.01 (p = 0.001). The R2 and MSE between the 
predicted and actual VRRT alteration were 0.14 (p = 
0.045) and 0.04 (p = 0.013), respectively; while the 
R2 and MSE between the predicted and actual ARRT 
alteration were 0.25 (p = 0.014) and 0.02 (p = 0.001). 
In summary, the predictive models were able to decode 
high-altitude induced psychomotor impairments from 
the changes of brain activation during the exposure.

3.3. Regions contributed to prediction

The weight maps of patterns contributed to predictions 
were displayed in Figure 2. The voxel-based weight 
maps were located on the left, while the region-
based weight maps (computed from the voxel based 
predictive pattern) were located on the right. The 
color of each region corresponds to the normalized 
average of voxels weights within the regions (in 
absolute value). The top 10 ranked regions according to 
normalized weights per region were displayed in Table 
1, which represent over 15% of the total weights in the 
decision functions. Generally, the regions with highest 
contributions to the predictions were bilateral putamen 
and bilateral pallidum, while Heschl's gyrus and cuneus 
gyrus also contributed to the predictions, suggesting 
that predictions were mainly based on the patterns 

was calculated, which was referred to as "target" in 
the process of model establishment. Then, the ReHo 
difference between pre-exposure and post-exposure 
(ReHo post-exposure – ReHo pre-exposure) was 
calculated in the similar method used for calculating 
the RT alteration. For each individual, the map of ReHo 
differences was referred to as "input", from which the 
patterns would be recognized in the process of model 
establishment (2,8). 
 A standard procedure in Pattern Recognition for 
Neuroimaging Toolbox (PRoNTo) (http://www.mlnl.
cs.ucl.ac.uk/pronto/) was utilized to train and test the 
predictive models. The models were trained to learn 
the association between the ReHo and RT alterations 
using the examples in training sets. Three Pattern 
recognition algorithms currently available in PRoNTo: 
Relevance Vector Regression (RVR), Gaussian Process 
Regression (GPR) and Kernel Ridge Regression (KRR) 
were utilized to extract predictive patterns within 
the data of ReHo alterations (9). In the preliminary 
research, we found there were no significant differences 
in the performance of the three different algorithms. 
Herein, we only present the results of RVR for the sake 
of brevity. RVR is a probabilistic kernel-based pattern 
recognition method using Bayesian inference to obtain 
sparse regression models, and allows the extraction of 
patterns within a high-dimensional feature space, which 
was widely used in previous studies (10). 
 Two different cross-validation strategies were 
utilized to evaluate the model performance: leave-
one-out cross-validation and 4-fold cross-validation. 
Leave-one-out cross validation is a frequently used 
validation method, involving leaving one subject out 
as the validation data, training the model on other N-1 
subjects, and doing so N times so that each subject is 
left out once. In 4-fold cross-validation, the original 
sample is randomly partitioned into 4 equal sized 
subsamples. Of the 4 subsamples, a single subsample 
is retained as the validation data, and the remaining 3 
subsamples are used as training data (4). 
 In both cross-validation strategies,  the RT 
alteration(s) left out for test was/were decoded from the 
corresponding data of ReHo alterations using the model 
trained on the remaining data. Agreement between 
predicted and actual RT alterations was assessed using 
two different metrics: coefficient of determination (R2) 
and mean squared error (MSE). Statistical significance 
for both metrics was determined by permutation tests 
with 1000 times. Results were considered significant if 
the p < 0.05 (4,9).

2.4. Weight map

For pattern recognition models showing significant 
R2 and MSE, weight maps were built at both voxel 
and region level. For each brain region defined by 
the Anatomical Automatic Labeling (AAL) atlas, the 
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concentrated in these regions.

The neurobehavioral and rs-fMRI data used in the 
current study have been analyzed and reported in our 
previous study (2). Previously, we aimed at identifying 
the brain regions related to high-altitude induced 
cognitive impairment. Similar to other conventional 
neuroimaging studies, we utilized univariate statistical 
analysis to compare the neuroimaging data before 
exposure with those after exposure. The results showed 
significant associations between ReHo changes 
in putamen and alterations of the neurobehavioral 
alterations. However, a major limitation of the 
univariate analysis we used is that it only describes 
differences at the group level and does not enable 
decisions at the individual level, which is of more 
limited use in practice. In the present study, instead 
of investigating association between neurobehavioral 
measures and brain activity at the group level, we 
applied pattern recognition approach, with the aim of 
determining whether the alteration of neurobehavioral 
measures at different time points could be decoded from 
patterns of whole-brain activity changes. To the best of 
our knowledge, this is the first study applying pattern 
recognition approach to predict individual's cognitive 
impairment under high-altitude exposure. 
 The strength of this study was guaranteed the 
two different cross-validation strategies, four-fold 

cross-validation and leave-one-out cross-validation. 
Although it's common to leave one subject out and train 
the model with N-1 subjects (where N corresponds 
to the total number of subjects), demonstration of 
reproducibility between different cross-validation 
strategies is vital to display the stability of the results 
and for future clinical use of the predictive model. 
The R2 and MSE between predicted and actual RT 
alterations were significant when the model was tested 
using the two different cross-validation strategies, 
suggesting the relationship between psychomotor 
function impairment and the brain activity alteration is 
reliable in the model establishment (9). Interestingly, 
we found the R2s between predicted and actual VRRT/
ARRT alterations were lower than those in VSRT/
ASRT alteration prediction (MSEs were higher). One 
possible explanation for these findings is the fact that 
recognition reaction tasks included more brain regions 
and neurophysiological processes in responding to 
signals of complex directions, thus it's more difficult for 
the learning algorithm to learn the relationship between 
the neurobehavioral measures and brain activity. 
 Some brain areas are probably more informative 
about regression targets than others. The weight map 
is therefore a spatial representation of the decision 
function, i.e. every voxel within the mask contributes 
with a certain weight to the decision function. Since 
the prediction is based on the whole brain pattern, 

Figure 1. The scatter plots displaying the predicted neurobehavioral alterations (x-axis) against the actual values or targets 
(y-axis). VSRT, visual simple reaction time; ASRT, audial simple reaction time; VRRT, visual recognition reaction time; ARRT, 
audial simple reaction time.
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Figure 2. The weight map of patterns in the prediction of neurobehavioral alterations. (A) VSRT; (B) ASRT; (C) VRRT; (D) 
ARRT. The voxel-based weight maps were located on the left, and the color bar indicated the relative importance of the voxel in the 
decision function. The region-based pattern localization maps were located on the right, and the color bar indicated the normalized 
contribution of the region.
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rather than on individual regions or voxels, all voxels 
contribute to the regression and no conclusions should 
be drawn about a particular subset of voxels in isolation 
(4). The brain regions with the highest contribution 
to decoding the striatum, including the putamen and 
pallidum. This result is consistent with the results at 
group level in our previous study. The striatum is a 
critical component of the motor and reward systems, 
which receives glutamatergic and dopaminergic inputs 
from different sources and serves as the primary input 
to the rest of the basal ganglia. It is well established 

that movement disorders such as dyskinesias, chorea 
and choreoathetosis are associated with abnormal 
functioning within these regions (11-13). As a result, 
our findings suggest that neural functionality loss 
in these motor regulating regions may contribute to 
psychomotor impairment in high-altitude immigrants. 
Our investigation therefore indicates that these 
brain regions may provide critical information for 
successfully estimating vulnerability to high-altitude 
stress at the individual level. 
 There were some limitations in the present study. 
To be most important, although we applied two 
different cross-validation strategies to demonstrate 
generalizability of the predicative models, ideally 
the models should be tested with truly independent 
samples. Further studies with larger sample sizes are 
necessary to assess the generalizability of the proposed 
modelling approach by completely independent training 
and testing sets.

4. Conclusion

This study was designed to examine whether pattern 
recognition approach could be applied to neuroimaging 
data  to  predict  individual- level  psychomotor 
impairment under high-altitude exposure. Future 
studies, using a combination of pattern recognition and 
neuroimaging approaches, can build on the present 
findings to determine the individual's vulnerability to 
other cognitive impairments under long-term high-
altitude exposure. Furthermore, as the follow-up of 
our STI cohort continues, we are trying to decode 
the cognitive impairment under long time high-
altitude exposure (4-year or more) from the existing 
neuroimaging data acquired in relatively short time 
(2-year), whose findings may be more persuasive in 
advising the voluntary high-altitude immigrants in the 
clinical practice.

Acknowledgement

This study was financially supported by the National 
Science Foundation of China (No. 81330045, 81730053, 
81803194, 81502770) and the Military Logistics 
Research Project (No. AWS14L008, AWS16J022).

References

1. Yan X. Cognitive impairments at high altitudes and 
adaptation. High Alt Med Biol. 2014; 15:141-145.

2. Chen X, Zhang Q, Wang J, et al . Cognitive and 
neuroimaging changes in healthy immigrants upon 
relocation to a high altitude: A panel study. Hum Brain 
Mapp. 2017; 38:3865-3877.

3. Jiang L, Zuo XN. Regional homogeneity: A multimodal, 
mul t iscale neuroimaging marker of the human 
connectome. Neuroscientist. 2016; 22:486-505.

4. Schrouff J, Rosa MJ, Rondina JM, Marquand AF, Chu C, 

Table 1. The top ten ranked regions contributed to the 
prediction of VSRT/ASRT/VRRT/ARRT alterations

Regions

Prediction of VSRT Alterations
     L Putamen
     R Putamen
     L Pallidum
     L Heschl's Gyrus
     R Heschl's Gyrus
     R Pallidum
     L Insula
     R Gyrus Rectus
     L Angular Gyrus
     L Cuneus Gyrus
Prediction of ASRT Alterations
     L Pallidum
     L Putamen
     R Pallidum
     R Putamen
     R Superior Occipital Gyrus
     R Inferior Occipital Gyrus
     R Superior Frontal Gyrus, Orbital Part
     R Heschl's Gyrus
     R Middle Occipital Gyrus
     R Precuneus
Prediction of VRRT Alterations
     L Pallidum
     L Putamen
     R Pallidum
     R Heschl's Gyrus
     R Putamen
     L Heschl's Gyrus
     L Cuneus Gyrus
     L Angular Gyrus
     R Middle Frontal Gyrus, Orbital Part
     L Superior Occipital Gyrus
Prediction of ARRT Alterations
     R Putamen
     R Pallidum
     R Heschl's Gyrus
     L Putamen
     L Pallidum
     R Insula
     L Cerebellum Crus II
     L Superior Frontal Gyrus
     Vermis 6
     L Cuneus Gyrus

Weight (%)

2.53 
1.87 
1.82 
1.76 
1.51 
1.47 
1.27 
1.24 
1.24 
1.22 

2.18 
1.98 
1.72 
1.63 
1.48 
1.48 
1.40 
1.31 
1.24 
1.20 

2.12 
1.98 
1.68 
1.57 
1.57 
1.39 
1.21 
1.20 
1.16 
1.15 

2.07 
2.03 
1.60 
1.54 
1.46 
1.41 
1.33 
1.30 
1.29 
1.27 

Size (voxels)

284
318
79
72
60
68

560
185
340
460

79
284
68

318
391
313
166
60

565
898

79
284
68
60

318
72

460
340
213
353

318
68
60

284
79

508
518

1,013
87

460

The third column (weights) displayed the normalized contribution 
of each region. The rows of the table are sorted in descending order 
according to this value. The fourth column displayed the size of the 
patterns (voxels) in each region, indicating the overlap between the 
atlas and the data. VSRT, visual simple reaction time; ASRT, audial 
simple reaction time; VRRT, visual recognition reaction time; ARRT, 
audial simple reaction time.



www.biosciencetrends.com

BioScience Trends. 2019; 13(1):98-104.104

Ashburner J, Phillips C, Richiardi J, Mourão-Miranda J. 
PRoNTo: Pattern recognition for neuroimaging toolbox. 
Neuroinformatics. 2013; 11:319-337.

5. Taylor JA, Matthews N, Michie PT, Rosa MJ, Garrido 
MI. Auditory prediction errors as individual biomarkers 
of schizophrenia. Neuroimage Clin. 2017; 15:264-273.

6. Mateos-Perez JM, Dadar M, Lacalle-Aurioles M, 
Iturria-Medina Y, Zeighami Y, Evans AC. Structural 
neuroimaging as clinical predictor: A review of machine 
learning applications. Neuroimage Clin. 2018; 20:506-
522.

7. Yan CG, Zang YF. DPARSF: A MATLAB toolbox for 
"Pipeline" data analysis of resting-state fMRI. Front Syst 
Neurosci. 2010; 4:13.

8. Gualtieri CT, Johnson LG. Reliability and validity of 
a computerized neurocognitive test battery, CNS Vital 
Signs. Arch Clin Neuropsychol. 2006; 21:623-643.

9. Portugal LC, Rosa MJ, Rao A, et al. Can Emotional 
and Behavioral Dysregulation in Youth Be Decoded 

from Functional Neuroimaging? PloS One. 2016; 
11:e0117603.

10. Ranlund S, Rosa MJ, de Jong S, Cole JH, Kyriakopoulos 
M, Fu CHY, Mehta MA, Dima D. Associations between 
polygenic risk scores for four psychiatric illnesses and 
brain structure using multivariate pattern recognition. 
Neuroimage Clin. 2018; 20:1026-1036.

11. Kandiah N, Tan K, Lim CC, Venketasubramanian N. 
Hyperglycemic choreoathetosis: role of the putamen in 
pathogenesis. Mov Disord. 2009; 24:915-919.

12. Singh-Bains MK, Waldvogel HJ, Faull RL. The role 
of the human globus pallidus in Huntington's disease. 
The role of the human globus pallidus in Huntington's 
disease. 2016; 26:741-751.

13. Nakawah MO, Lai EC. Post-stroke dyskinesias. 
Neuropsychiatr Dis Treat. 2016; 12:2885-2893.

 (Received January 10, 2019; Revised February 3, 2019; 
Accepted February 9, 2019)


