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Male rats exhibit higher pro-BDNF, c-Fos and dendritic tree 
changes after chronic acoustic stress
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1. Introduction

Noise represents a growing health problem for 
industrialized and developing countries (1). Recreational, 
occupational or environmental noise (EN) has long been 
known to induce damage in classic auditory structures 
including cochlear hair cells, auditory nerve fiber 
terminals and superior cortical structures (2). At the 
central level, changes in spontaneous firing rates, neural 
synchrony, tonotopic map reorganization, cell death, 
abnormal neural coding and axonal sprouting have been 
reported affecting neurons in auditory cortices (AC) (3-
6). Several organs and functions beyond the auditory 

system, can also be affected by noise (7). EN may affect 
non-auditory brain regions such as the hippocampus, 
a limbic structure that receives direct and/or indirect 
neuronal projections from the auditory system (8). As an 
environmental stressor, EN may also affect hippocampal 
integrity by inducing dysregulation of the hypothalamic-
pituitary-adrenal (HPA) axis since the hippocampus 
contains one of the higher distributions of the stress 
hormone receptors in the brain: the glucocorticoid (GR) 
and mineralocorticoid receptors (MR) (9). 
 Accumulated evidence previously demonstrated 
that noise might affect hippocampal-related cognition 
(10-12), cell proliferation, neurotransmitter function 
and neurogenesis (13-16). The most consistent data 
depicting the effect of environmental stressors over the 
brain has been reported as structural changes affecting 
the plastic properties of neurons in the hippocampus 
and other stress-related structures. The protein product 
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of the Fos proto-oncogene, has been frequently used 
to evidence changes in neuronal activity associated to 
environmental threats (17). Studies assessing effects 
of stress have evidenced changes on c-Fos levels after 
acute and chronic exposures (18-20). Also, it has also 
been consistently reported a causal relationship between 
stress and atrophy of dendrite arbors in specific 
subregions of the hippocampus (21-24). Yet, expansion 
of dendrites and reversible dendritic remodeling over 
a time frame of days or weeks has also been described 
inside and outside the hippocampus (25,26). Since the 
patterning of dendrites and the overall shape of the 
dendritic arbor depends on synaptic input, it follows 
that changes in the structure of the dendritic tree may 
instead reflect changes in the plastic/adaptive properties 
of neurons (27). So, conditions challenging the adaptive 
capability of the brain should affect and reshape 
dendritic complexity at specific regions of the brain. 
 Mechanisms underlying stress-induced dendritic 
remodeling have also been investigated. It has been 
suggested that glucocorticoids, excitatory amino acid 
release, serotonin and some neurotrophic factors could 
be critical mediators of this effect (28). Accounting 
for neurotrophins, it has been documented that stress 
effects on structural plasticity of neurons are related to 
changes in brain-derived neurotrophic factor (BDNF) 
signaling (29). While BDNF promotes plasticity 
by enhancing survival, differentiation or dendrite 
growing, its precursor pro-BDNF has been associated 
with debranching of dendritic arbors (30-32). Then, 
changes on BDNF or its precursor pro-BDNF could 
be associated with structural changes induced by 
environmental stressors.
 In the last years, sex has also been recognized as 
an important determinant of brain susceptibility to 
environmental threats (33-35). Since the susceptibility 
to noise may differ among individuals, investigators in 
this area have begun to suspect that gender may indeed 
be a main condition determining the neurobiological 
effects of noise. Concerning other stressors, a growing 
number of investigations have established that males 
and females present different amounts of susceptibility 
to threatening conditions (34). Moreover, it has been 
established that most of the stress-related disorders 
that affect the hippocampus integrity show sex 
differences in severity of symptoms. While depression 
or Alzheimer disease shows greater severity in females, 
schizophrenia and other diseases are more severe in 
males (36-38). Therefore, it could be expected that 
changes induced by environmental stressors on the 
integrity of hippocampus and/or AC, deeply vary from 
one sex to another.
 To analyze these differences, we designed an 
experiment to compare Golgi-stained dendrites and 
c-Fos activity patterns in AC and hippocampal neurons 
from male and female rats exposed to environmental 
noise. Fluctuations of serum pro-BDNF levels were 

also investigated in order to support the expected 
morphological changes.

2. Materials and Methods

2.1. Experimental animals

In order to compare differences, we used 40 adult 
Wistar male and female rats (age 90 days old) obtained 
from the in-house breeding facility at the West Center 
for Biomedical Research, Guadalajara, México. These 
animals were randomly divided to evaluate the effects 
of noise on c-Fos expression levels (n = 12 for each 
sex) and dendritic arborizations (n = 8 for each sex). All 
groups were maintained in a 12:12 light-darkness cycle 
with lights on at 07:00. Temperature in the experimental 
room was maintained at 22 ± 2°C and humidity at 70%. 
We guaranteed free access to tap water and balanced 
food. All animal experiments complied with National 
Institutes of Health guide (NIH Publications No. 8023, 
revised 1978) for the care and use of Laboratory animals.

2.2. Noise exposure

To produce a noisy environment, we disposed a 
rats' audiogram-fitted adaptation provided with 
representative sounds of urban environments (i.e., 
turbines, hooters, horns, etc) as described by Rabat (39). 
The administered sounds considered the rats' lower 
capacity to detect low frequencies (under 500 Hz) and 
its greater capacity to perceive high frequencies (over 
8,000 Hz). We used metal grid cages to avoid sound 
refraction and housed the animals in groups of 4 in a 
soundproofed room. Professional tweeters (Yamaha, 
Inc. Japan) were placed 1 m above the cages and were 
powered by a Mackie amplifier (Mackie M1400; freq. 
20 Hz to 70 kHz; 300 W at 8 Ω). The speaker and 
tweeter characteristics allowed sound delivery between 
20 and 50,000 Hz. Audio files containing unpredictable 
noise events were presented in random tracks that 
alternated noisy events (18-39 s of turbine, hooter or 
horn sounds) with silent intervals ranging from 20 to 
165 s. Soundtracks were presented with mixer software 
that transmitted the signal at levels ranging from 70 
dB(A) to 103 dB(A). 
 To avoid housing effects, both, control and 
experimental rats were transferred to the testing room 
48 hours before the start of the stimuli. A few minutes 
before the speakers were activated, control rats were 
transferred to the surgical room for further sacrifice. 
 Prior to sacrifice, female rats were examined to 
determine estrous phase. Vaginal lavages were achieved 
and exfoliate cytology was observed under light 
microscopy. Estrous phase was determined based on 
the morphology of cells present and the day of sacrifice 
was chosen avoiding proestrus and estrus since these 
phases could generate confounding results.
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room temperature into a mixture of solutions (provided 
by the kit producer) for the next 2 weeks. The tissues 
were then transferred into a protectant solution C (0.1 
M phosphate buffer, sucrose, polyvinylpyrrolidone and 
ethylene glycol) and stored for 48 hours in the dark 
at 4°C. The tissues were sectioned into 200μm slices 
using a vibratome (Leica, VT1000 S). Each section 
was mounted with protectant solution on gelatin-
coated microscope slides. Sections were then dried at 
room temperature in the dark for a couple of weeks. 
For the next procedure the slides were collocated into 
the staining solution D and E (ammonia and sodium 
thiosulfate). Then the tissues were dehydrated in 50%, 
75%, 95% and 100% ethanol and cleared in xylene. 
The tissues were coverslipped in Permount™ Mounting 
Medium. The slides were finally viewed under a Leica 
DMi8 microscope.

2.6. Morphological analysis

Sections containing the hippocampus and the auditory 
cortex (AC) were delineated according to anatomical 
atlases and with the help of c-Fos stained sections.
 Sholl analysis was employed to assess dendritic 
trees as described by Kutzing (2010). We quantified 
the number of intersections in concentric rings at 3 
μm intervals. We also quantified the total number of 
dendrites and the total length of dendrites. 
 To conduct the Sholl analysis, photographs were 
obtained using bright-field microscopy (Leica DMi8 
microscope) 20× magnification connected to a DFC 
7000T camera, which transmitted the microscopic 
image to a PC coupled with MATLAB (MathWorks), 
NeuroJ pluggin for ImajeJ and NeuroStudio. Spatial 
information related to the position of dendritic segments 
in relation to soma was acquired with ImageJ/NeuroJ, 
identification of branch and endpoints was realized 
with NeuroStudio, and writing of scripts to convert 
data was conducted in MATLAB. We analyzed 400 
neurons on the hippocampus and 200 neurons in AC. 
To select neurons, we observed that Golgi impregnation 
was consistent, the neurons presented at least some 
tertiary branches, were visualized in isolation from 
other neurons, and the soma was visible and centrally 
located. 

2.7. Statistical analysis

The particular measurements from selected neurons 
were averaged to get a single value of the number 
of intersections, the dendritic length and the number 
of segments for one animal and group means were 
obtained from 4 subjects. The significance of the 
differences between morphological or serological data 
from exposed and control groups of rats were tested by 
ANOVA. All statistical analysis was performed using 
GraphPad (GraphPad, version prism 8). Results were 

2.3. pro-BDNF assays

To identify changes on circulating pro-BDNF 
levels, we collected a blood sample from each rat 
before sacrifice. pro-BDNF levels were measured 
using an enzyme immunoassay kit (Aviva Systems 
Biology OKAG00197). Blood samples were obtained 
immediately after the noise was ended in day 21 and 
from tail veins at day 7 (always between 07:00 and 
08:00 hours, in order to avoid circadian variation).

2.4. c-Fos immunohistochemistry

The rats  received an i .p .  inject ion of  sodium 
pentobarbital (60 mg/kg) and were perfused through 
the left cardiac ventricle with 150 ml of saline solution 
followed by 200 ml of 3.8% paraformaldehyde in 0.1 M 
phosphate buffer saline (PBS), pH 7.4. After perfusion, 
brains were removed and sectioned in coronal slices (40 
μm) using a vibratome Leica VT1000E. 
 To evaluate the neuronal activity on the exposed 
subjects, the protein product of the proto-oncogene c-Fos 
was immunohistochemically analyzed. We perfused 
the animals at the acute phase of 2h (n = 4/sex), and, at 
chronic phase of 21d (n = 4/sex). The 0h group (n = 4/
sex) was considered the control for all groups.
 We selected one of every third section spanning 
from Bregma -2.1mm to Bregma -3.8mm to conduct 
immunohistochemistry (40). Sections were blocked 
with 10% normal goat serum (NGS) in Tris-buffered 
saline (0.05M, 0.9%, pH 7.4) plus 0.3% of Triton X-100 
(TBST) for 1 h at room temperature. After blocking, 
tissues were incubated overnight with rabbit anti c-Fos 
primary antibody at a 1:1000 dilution (Santacruz 
Biotechnology, Santa Cruz, CA) in TBST + 1% NGS 
at 4°C with 50 rpm shaking. On the next day, sections 
were rinsed three times for 10 min with TBST and 
incubated for 2 h at room temperature with biotinylated 
goat anti-rabbit secondary antibody (1:500; Vector 
Labs, Burlingame, CA). Next, tissues were incubated in 
avidin-biotin-peroxidase complex (Elite ABC kit, Vector 
labs) for 1 h and revealed with diaminobenzidine 0.05% 
as chromogen. Once revealed, sections were rinsed 
and mounted in permount-mounting medium. c-Fos 
immunoreactive nuclei per 540 μm (40x microscopic 
field) were counted using a Leica DMi8 microscope. 

2.5. Golgi-Cox Stainning

When the animals completed the 3 weeks in the noise 
room, both exposed (n = 4/sex) and control (n = 4/sex) 
rats were anesthesiated and decapitated. The skulls 
were opened, the brains quickly removed, cut with 
a blade into 1 cm thick slabs and processed using a 
FD Rapid GolgiStain™ kit (FD Neuro Technologies, 
Ellicott city, MD, USA). On each procedure, blocks 
from 1 control and 1 exposed rat were put in the dark at 
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expressed as mean ± SEM. Post hoc test (Sidak analysis 
to correct multiple comparisons) was employed to 
explore differences in single time points between male 
and female exposed rats as well as in comparison 
with the control group. Differences were considered 
statistically significant at a value *p < 0.05 (**p < 0.01, 
***p < 0.001); (*) control vs. male noise; (°) control vs. 
female noise, (&) male vs. female.

3. Results

3.1. Serum pro-BDNF concentrations

ANOVA analysis evidenced main differences for serum 
pro-BDNF levels [F(5,6) = 10.15; p < 0.006]. Post 
hoc comparisons showed that noise-exposed males 
increased their pro-BDNF levels after 7 (t = 5.994; p 
< 0.001) and 21 days (t = 5.691; p < 0.010) compared 
to their own control. Female differences did not reach 
significance when compared to controls. We found 
differences between exposed males and females when 
comparisons were made on day 21 (t = 5.994; p < 0.001). 
Figure 1 illustrates pro-BDNF differences.

3.2. c-Fos immunohistochemistry

3.2.1. Auditory Cortex 

Exposed males increased their expression levels after 
2h (t = 18.51; p < 0.001) and 21d (t = 9.432; p < 0.001) 
when compared to control. Females also showed 
significant increases at 2h (t = 11.67; p < 0.001) and 
21d (t = 6.691; p < 0.001). Intersex comparisons 
showed that males outnumbered females at 2h (t = 
6.855; p < 0.001) and 21days (t = 5.766; p < 0.001). 
Figure 2 illustrates AC differences in c-Fos counting. 

3.2.2. Hippocampus 

Male rats exposed to environmental noise showed 
higher amounts of c-Fos+ cells at 2h (t = 12.56; p < 
0.001) and 21d (t = 15.03; p < 0.001) when compared 
with control. Also, females displayed higher expression 
levels at 2h (t = 9.897; p < 0.001), and 21d (t = 14.90; 
p < 0.001). Analysis of differences between sexes, 
showed that male increases were higher than females at 
2h (t = 6.635; p < 0.001), and 21d (t = 9.985; p < 0.001). 
Figure 3 illustrates these differences.

3.3. Dendritic complexity in auditory cortex (AC)

Sholl analysis was employed to assess the dendritic 
branching tree, the number of segments and the total 
length of dendrites as shown in Figure 4. 
 No differences in the number of intersections (Figure 
5), branches (Figure 6) and dendrite lengths (Figure 7) 
were found when comparing exposed groups with their 
respective control or in intersex comparisons. However, 
we noted that basal numbers of branches were higher in 
females (t = 13.19; p < 0.001), and that basal dendrite 
lengths were higher in males (t = 4.761; p < 0.001). 
Such patterns changed under EN since males decreased 

Figure 1. Serum pro-BDNF levels in male and female rats 
exposed to acoustic stress. Shows results of samples collected 
on 7 seven and 21 days of exposure. Data represent the mean 
± SEM. *p < 0.05 (**p < 0.01, ***p < 0.001); (*) control vs. 
exposed males; (°) control vs. exposed females, (&) exposed 
males vs. exposed females.

Figure 2. c-Fos expression levels in AC of male and female 
rats exposed acoustic stress. Shows results of c-Fos counts 
after 2 hour and 21 days of environmental noise. Data represent 
the mean ± SEM. *p < 0.05 (**p < 0.01, ***p < 0.001) (*) 
control vs. exposed males; (°) control vs. exposed females, (&) 
exposed males vs. exposed females. Representative sections 
of c-Fos expression in Auditory cortex (AC). Figures A1-
A3 represent male groups. Figures B1-B3 female groups. 
Magnification 10X, scale bars indicate 100 µm.
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their numbers of branches (t = 10.89; p < 0.001) but 
increased their dendrite lengths (t = 3.878; p < 0.001). 

3.4. Dendritic complexity in hippocampus

ANOVA analysis revealed significant differences in 
Sholl analyses [F(3, 342) = 10.84; p < 0.001]. Figure 

8 illustrates this. Compared to control, exposed males 
reduced the total number of intersections (t = 3.951; 
p < 0.001). Those reductions were significant for 
branches (t = 4.366; p < 0.001) (Figure 9) but not for 
dendrite lengths (Figure 10). Females in the other hand 
showed no differences in the number of intersections 
but exhibited reductions in branches (t = 4.694; p < 
0.001) that were compensated with increases in lengths 
(t = 9.338; p < 0.001). Intersex comparisons exhibited 
that male reductions were significant for the number of 
branches (t = 2.915; p < 0.001).

4. Discussion

Our data demonstrated that EN differentially increased 
c-Fos expression levels, induced structural changes in 
dendritic trees, and elevated serum levels of pro-BDNF. 
While c-Fos quantification showed strong 2h-increases 
that diminished at 21 days in auditory cortex, the 
hippocampus showed the opposite effect by registering 
bigger increases after 21days. In contrast, the analysis 
of dendritic trees showed no main differences in the 
complexity of the dendrite arbors of AC, but intense 
reductions in the dendritic trees of hippocampal 
neurons. The differences were significantly higher in 
the hippocampus and markedly affected the group of 
exposed males. Those changes were also accompanied 
by differential increases in the serum levels of pro-
BDNF.
 Given the probed utility of c-Fos to evidence neural 
responses to environmental threats, it was expected 
that auditory cortices reacted to environmental noise 
with regional increases of c-Fos expression (41). As 
expected, our results demonstrated that the protein 
product c-Fos quickly increased its expression patterns 
after acute exposures. Beyond this, we noted that 
patterns of c-Fos activation include not only peaks 
in the range of the first 2 hours affecting auditory 
structures, but also retarded increased expressions 

Figure 3. c-Fos expression levels in hippocampus of male 
and female rats exposed to acoustic stress. Shows results 
of c-Fos counts after 2 hour and 21 days of environmental 
noise. Data represent the mean ± SEM. *p < 0.05 (**p < 0.01, 
***p < 0.001) (*) control vs. exposed males; (°) control vs. 
exposed females, (&) exposed males vs. exposed females. 
Representative sections of c-Fos expression in hippocampus. 
Figures A1-A3 represent male groups. Figures B1-B3 female 
groups. Magnification 10X, scale bars indicate 100 µm.

Figure 4. Morphometric analysis in AC and hippocampus of male and female rats exposed to acoustic stress. Figure above 
shows hippocampal representative neurons. Panel below shows auditory cortex representative neurons. Male groups are displayed 
with letters A, B and C, females with D, E and F. C1, C3, F1, F2 illustrates 21 days of EN exposure. Magnification 20×, scale bars 
indicate 50 µm.
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Figure 5. Sholl analysis in AC of male and female rats exposed to acoustic stress. Illustrates the number of intersections found 
in 200 neurons of auditory cortex. Data represent the mean ± SEM. *p < 0.05 (**p < 0.01, ***p < 0.001); (*) control vs. exposed 
males; (°) control vs. exposed females, (&) exposed males vs. exposed females.

Figure 6. Total number of dendrites in neurons of AC from 
male and female rats exposed to acoustic stress. Illustrates 
the number of dendrites counted per neuron in auditory cortex 
of male and female rats exposed to 21 days of environmental 
noise. Data represent the mean ± SEM. *p < 0.05 (**p < 0.01, 
***p < 0.001); (*) control vs. exposed males; (°) control vs. 
exposed females, (&) exposed males vs. exposed females.

Figure 7. Length of dendrites in neurons of AC from male 
and female rats exposed to acoustic stress. Illustrates the 
length of dendrites registered in neurons of auditory cortex 
of male and female rats exposed to 21 days of environmental 
noise. Data represent the mean ± SEM. *p < 0.05 (**p < 0.01, 
***p < 0.001); (*) control vs. exposed males; (°) control vs. 
exposed females, (&) exposed males vs. exposed females.

Figure 8. Sholl analysis in hippocampus of male and female rats exposed to acoustic stress. Illustrates the number of 
intersections found in 400 neurons of hippocampal area. Data represent the mean ± SEM. *p < 0.05 (**p < 0.01, ***p < 0.001); (*) 
control vs. exposed males; (°) control vs. exposed females, (&) exposed males vs. exposed females.



www.biosciencetrends.com

BioScience Trends. 2019; 13(6):546-555. 552

affecting the hippocampus (42). Then, our experiment 
demonstrated regional differences with expression 
patterns differing as a function of time and structure. 
In support of this, time and region differences in 
expression patterns of c-Fos have been previously 
described. Reported patterns include fast general rises 
after a few hours affecting large regions of the brain, 
and retarded or sustained elevations affecting restricted 
areas of the limbic system (i.e. prefrontal cortex or 
other limbic structures) (20,42,43). Since this seems 
to be the case in our results (the hippocampus became 
lately activated), we may suppose in agreement with 
these authors that while some structures may be critical 
for the rapid processing of noise, other areas may be 
more dedicated to the chronic adaptation to the stimuli. 
Then, beyond the confirmation that neural activation 
varies in a time and region-dependent manner, our data 
also support the hypothesis that hippocampal regions 
and perhaps other limbic structures could be critical to 
respond to persistent noisy environments. 
 Sholl analysis confirmed that EN, is capable of 
inducing enduring structural changes affecting limbic 
extra-auditory structures. Recent evidence supports our 
results by showing that when exposing rats to other 
models of noise, the dendritic trees of hippocampal 
neurons became diminished (44,45). Since changes 
affecting dendritic arborizations may correspond 
to changes in firing properties of the hippocampal 
neurons (27), it could be supposed that noise-induced 
debranchings should reduce the subjects ability to 
process hippocampus-dependent information and to 
adapt to challenging conditions. Studies in the stress 
area support this assumption by showing that dendritic 
retractions have indirect functional consequences on 

spatial memory and the regulatory capacity of the HPA 
axis (28). According to this idea, some studies have 
demonstrated that noise-induced structural changes 
affecting the hippocampus are accompanied by deficits 
in learning and memory abilities (14,15,46-48). Given 
this coincidence, the chronic effects of noise over the 
hippocampal dendrites, could in great part be attributed 
to the stressing properties of noise. In this respect, it 
was previously demonstrated that the model of noise 
employed here is capable of exacerbating the activity 
of the HPA axis hormones (46). Therefore, besides 
the well documented effects on hearing structures (i.e. 
noise induced hearing loss -NIHL-), our study provides 
evidence linking noise exposure to activational and 
morphological effects outside the classical auditory 
structures. In view of this, it should be now considered 
that noise induced damage may also include brain 
structures and mechanisms different from that 
previously described for NIHL. Given the similarity 
with results in experimental stress, mechanisms of 
stress response could be responsible for some of the 
noise-induced damage outside the auditory system. 
Unlike common stressors that transiently affect the 
subject's life, it must be considered that environmental 
noise is an omnipresent stimuli affecting almost every 
part of human life.
 In  l ine  wi th  th is ,  our  resul ts  showed that 
hippocampal neurons could be more affected than 
AC neurons when noisy environments persist over 
longer periods. Recent evidence offers support for 
this idea. The main group of data has been provided 
by Cheng and colleagues (49,50) in a series of 
experiments designed to assess peroxidation levels 
and tau phosphorylation in time lapses of 1, 3 and 6 

Figure 9. Total number of dendrites in neurons of the 
hippocampus from male and female rats exposed to 
acoustic stress. Illustrates the number of dendrites counted per 
neuron in the hippocampus of male and female rats exposed 
to 21 days of environmental noise. Data represent the mean 
± SEM. *p < 0.05 (**p < 0.01, ***p < 0.001); (*) control vs. 
exposed males; (°) control vs. exposed females, (&) exposed 
males vs. exposed females.

Figure 10. Length of dendrites in neurons of the 
hippocampus from male and female rats exposed to 
acoustic stress. Illustrates the length of dendrites registered in 
neurons of hippocampal areas of male and female rats exposed 
to 21 days of environmental noise. Data represent the mean 
± SEM. *p < 0.05 (**p < 0.01, ***p < 0.001); (*) control vs. 
exposed males; (°) control vs. exposed females, (&) exposed 
males vs. exposed females.
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weeks. After exposing rodents to moderate levels of 
noise, investigators suggested that hippocampal cells 
could be more vulnerable since oxidative damage and 
tau hyperphosphorylation appeared faster and stronger 
than appreciated in AC. Otherwise, results obtained in 
a parallel experiment conducted in our lab, showed that 
dendritic trees belonging to AC neurons were increased 
after 7 days of noise, but turned-back to basal values 
after 21 days. On the contrary, neurons in hippocampal 
regions showed no alterations after 7 days but exhibited 
strong reductions after 21 days (51). Then, in addition 
to the hypothesis sustaining that chronic effects of noise 
could be largely explained by its stressing properties, it 
could be added now the fact that the hippocampus may 
also exhibit more vulnerability than AC under chronic 
mild-level circumstances.
 Apart from the above discussed, our results showed 
that males and females were differently affected by 
EN since males exhibited higher c-Fos expression, 
larger dendritic tree reductions and higher pro-BDNF 
increases. About c-Fos, reports exist demonstrating 
different patterns of expression in male and female rats. 
According to available evidence, females should be 
more sensitive to the effects of both, acute and chronic 
stress (35). However, our results found the opposite 
effect since males exhibited higher expression levels. In 
line with our results, greater increases in males were also 
reported in a recent experiment that evaluated the acute 
effect of restraint stress over c-Fos expression levels (35). 
Accordingly, chronically stressed females also showed 
less c-Fos expressions after a novel acute stressor (52). 
Contrasted with our own data, it seems that unlike 
other commonly used stressors i.e. foot and tail shock 
(53), neonatal handling (54), restraint (55) and immune 
challenge (56), environmental noise provokes a stressor-
specific response that strongly affects males. Babb and 
colleagues supported this idea by demonstrating that 
contrary to males, females show less HPA-axis and c-Fos 
changes after noise than after restraint (57). 
 Similar patterns were observed in our Sholl analysis. 
Males exhibited lower number of intersections, shorter 
dendritic lengths, and a smaller number of segments. 
Then, the observed dendrite retractions confirmed the 
above suggested increased vulnerability from males to 
acoustic stress. Since other experiments have showed 
that females also exhibit less dendritic remodeling 
after chronic stress (58) it seems clear that plastic 
capabilities of females are more efficient dealing with 
some environmental stressors. To support this, previous 
studies have established that auditory organs of females 
are more resistant to deterioration over the years (59). 
Moreover, human observations have also suggested 
that men are more susceptible compared to women 
in hearing loss induced by long-term occupational 
exposure (60). Then, in order to optimize noise-induced 
treatment and prevention strategies, sex bias must be 
considered as well. In our experiment, resilience or 

adaptive capability of females was illustrated by data 
showing that even when reductions occurred in the 
number of dendrites, compensatory increases in the 
length of arborizations were activated to ameliorate 
the impact of aversive stimulation. Results on serum 
pro-BDNF also support this idea. While females 
exhibited non-significant increases, males significantly 
augmented this parameter at both assessments. As 
previously mentioned, reduced dendritic trees may at 
least in part be due to exacerbated p75NTR signaling 
since elevated pro-BDNF levels has been associated 
with dendrite retraction (32). Results showing that 
blood BDNF measurements are reliable predictors of 
brain BDNF offers additional support for our results 
(61). Moreover, there is also the possibility that BDNF 
conducts differential signaling cascades in male and 
females under physiological or pathological settings, 
offering for this mechanism novel opportunities for 
BDNF-based therapeutic strategies. 
 Limitations of our study include the lack of 
assessments for molecular mechanisms linking BDNF to 
dendrite retractions and c-Fos expression. By including 
sex steroids in the analysis, future studies could 
obtain reliable explanations for sex differences. Such 
mechanisms must be explored in new studies. Increasing 
the size of the sample, future studies could produce 
stronger results. 
 In conclusion, we generated evidence supporting that 
chronic acoustic stress may affect adaptive capabilities 
of subjects by inducing regional morphological changes 
outside the auditory structures. Our results indicate that 
hippocampal neurons could be particularly sensitive to 
longer effects of noise, and markedly, these effects could 
be gender biased with higher probabilities of damage in 
males.
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