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1. Introduction

Cardiovascular disease (CVD) is a common disease that 
jeopardizes the health of postmenopausal women (1) 
and atherosclerosis (AS) is the most critical pathological 
cause of CVD (2). Premenopausal women rarely 
suffer from CVD. However, the incidence of CVD in 
postmenopausal women is 2-6 times higher than that in 
premenopausal women of the same age group (3), due 
to its close relationship to a postmenopausal estrogen 
deficiency (4) (Figure 1). A study (5) involving 879 
women suggested that menopause was significantly 
associated with the risk of developing carotid plaques. 
Females with an earlier onset of menopause (< 45 years) 
had a significantly higher atherosclerotic plaque volume 
than those with an intermediate (45-52 years) or later 
onset of menopause (> 52 years), irrespective of other 

cardiovascular risk factors (6). The mean carotid intima-
media thickness (CIMT) of the common carotid artery 
in postmenopausal women was significantly thicker than 
that in premenopausal women, with a mean difference 
of 0.068 mm (7). A recent prospective cohort study (8) 
also found that an elevated or persistently high level 
of Aβ1- 40, an aging peptide, is related to the rate of 
progression of subclinical AS in postmenopausal women 
and negatively correlated with levels of DHEA-S. An 
increasing number of women are prescribed hormone 
replacement therapy (HRT) after menopause or ovarian 
resection to prevent and treat CVD, osteoporosis, 
Alzheimer's disease, and other related long-term 
postmenopausal complications (9-12).
 Dehydroepiandrosterone (DHEA) is the precursor 
of estrogen and androgen and is thought to prevent 
the development of AS (13). Dehydroepiandrosterone 
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In China, cardiovascular disease (CVD) has surpassed malignant tumours to become the disease 
with the highest mortality rate, and atherosclerosis (AS) is an important pathological cause of CVD. 
Dehydroepiandrosterone (DHEA) is the most abundant steroid hormone in circulating human blood 
and is a precursor of estrogen and androgen. DHEA is converted into a series of sex hormones in local 
peripheral tissues where its acts physiologically. DHEA also acts therapeutically, thereby avoiding the 
adverse systemic reactions to sex hormones. DHEA inhibits AS, thus inhibiting the development of 
CVD, and it improves the prognosis for CVD. The incidence of CVD in postmenopausal women is 
substantially higher than that in premenopausal women, and that incidence is believed to be related 
to a decrease in ovarian function. The current review analyzes the mechanisms of postmenopausal 
women's susceptibility to AS. They tend to have dyslipidemia, and their vascular smooth muscle cells 
(VSMCs) proliferate and migrate more. In addition, oxidative stress and the inflammatory response of 
endothelial cells (ECs) are more serious in postmenopausal women. This review also discusses how 
DHEA combats AS by countering these mechanisms, which include regulating the blood lipid status, 
protecting ECs (including coping with oxidative stress and inflammatory reactions of the vascular 
endothelium, inhibiting apoptosis of ECs, and inducing NO production) and inhibiting the proliferation 
and migration of VSMCs. As a result, DHEA has great value in preventing AS and inhibiting its 
progression in postmenopausal women.
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sulfate (DHEA-S) is the metabolite of DHEA, and the 
level of DHEA-S is significantly inversely correlated 
with the incidence of CVD (14-17). For postmenopausal 
women with coronary risk factors, a lower DHEA-S 
level means a higher mortality due to CVD (18). The 
new immunosenescence paradigm proposed in recent 
years offers an explanation. Senescence leads to the loss 
of DHEA, which causes semi-activated macrophages to 
be immunosuppressed and unable to differentiate, while 
releasing pro-inflammatory cytokines in an unregulated 
manner. These dysfunctional cells accumulate in 
vascular tissue and lead to the development of AS 
(19). That said, DHEA also has positive effects on 
the brain, bones, emotions, and sexual function of 
postmenopausal women, so its clinical use warrants 
consideration.

2. Metabolism and pathway of DHEA

As early as 1934, DHEA was successfully separated from 
urine. In 1944, Munson discovered the sulfated form of 
DHEA (20). DHEA, also known as 3β-hydroxyandrost-
5-en-17-one, is the most abundant steroid circulating in 
human blood and is synthesized from cholesterol.

2.1. Generation of DHEA

The production of DHEA in the adrenal cortex and 
ovaries is regulated by adrenocorticotropic hormone and 
gonadotropin, respectively. DHEA is mainly produced 
in the adrenal cortex, only 10% of DHEA is produced in 
the gonads, and the brain also produces a small amount 
of DHEA (21). Approximately 6-8 mg of DHEA are 

produced per day in humans (22). In the blood, DHEA 
is mainly bound to albumin, a small amount will also 
bind to sex hormone-binding globulin (SHBG), and the 
remaining amount is free.
 The level of DHEA changes during aging. The 
fetal adrenal gland produces a large amount of DHEA, 
but the level decreases rapidly after birth. The level of 
DHEA increases rapidly in the first two years of puberty, 
reaching a peak at 20-30 years of age, and then decreases 
at a rate of 2 to 5% annually. In individuals ages 70-
80 years, the level of DHEA in the blood is only 10 to 
20% of the peak level (23). The downstream hormones 
of the HPA axis have inhibitory feedback action on the 
upstream hormones, but DHEA does not participate in 
negative feedback regulation of the HPA axis. Thus, 
when the serum DHEA level is low, the body is unable 
to increase output through an endogenous feedback 
mechanism. Therefore, the body is unable to compensate 
for the deficiency in DHEA levels alone.

2.2. Conversion of DHEA

In the adrenal gland, endogenous DHEA is translated 
into DHEA-S by sulfation at the C3β position. In 
addition, oral DHEA is converted into DHEA-S via the 
first pass effect of the liver and intestine. As mentioned 
above, DHEA-S is a circulating reservoir of DHEA. 
Circulating DHEA is transferred to related peripheral 
tissues (e.g., the ovaries, prostate, bone, adipose 
tissue, and brain) and then converted into testosterone, 
androstenedione, estrone, dihydrotestosterone (DHT), 
and estradiol (E2).
 DHEA has biological action locally and indirectly. 
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Figure 1. Incidence of CVD and vascular status in women. The incidence of CVD in women was stable at around 0.25‰, and it increased 
significantly after the age of 40. The intima-media thickness of blood vessels in women also increased, with more lipid deposition.

Incidence of CVD in women
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menopause. Endogenous estrogen and ERs decrease in 
postmenopausal women (34,35), resulting in the loss of 
inhibition of AS by estrogen, thus making them more 
vulnerable to AS. The mechanism may be an increase in 
the serum cholesterol level and high-density lipoprotein 
(HDL) particle size as well as interference with VSMC 
proliferation as a result of the decrease in endogenous 
estrogen and ERs (36).

4. The effects of DHEA on AS in postmenopausal 
women

4.1. DHEA alleviates dyslipidemia in postmenopausal 
women

Several early cross-sectional and prospective studies 
have revealed that the lipoprotein profile tends to 
worsen in postmenopausal women: plasma triglyceride 
(TG), total cholesterol (TC) low-density lipoprotein 
cholesterol (LDL-C), and lipoprotein levels increase and 
HDL cholesterol (HDL-C) levels decrease (37,38). In 
addition, studies (39,40) have indicated that age has more 
adverse effects on TC, LDL-C, TG, and non-HDL-C 
in postmenopausal women than BMI or smoking. This 
adverse change seems inevitable for postmenopausal 
women. However, dyslipidemia, which is mainly 
elevated LDL-C, is the most important factor for AS. 
Therefore, if AS in postmenopausal women is to be 
treated, then alleviating dyslipidemia is a very important 
aspect.
 Substantial differences in the results of studies that 
have examined the effect of DHEA on blood lipid levels 
have been noted. Elevated plasma DHEA levels are 
reported to be correlated with HDL-C levels (41) but 
inversely correlated with LDL-C (42) and TC (43,44) 
levels. The correlation between plasma DHEA and TG 
levels was the most consistent. In a study by Jankowski 
et al., treatment with DHEA resulted in a 17% reduction 
in serum TG levels (48). Lasco A et al. (42) reported 
that the serum TG levels of 20 postmenopausal women 

It is known to be a multi-directional "hormone buffer" 
and to supplement hormones in the body, which explains 
why it has been used to treat menopause-related diseases. 
At the same time, since only a small amount of DHEA 
is in free circulation and DHEA is only converted into 
estrogen in the peripheral tissues, systemic estrogen-like 
adverse effects, such as cholelithiasis (24) and venous 
thromboembolic and ischemic stroke events (25), can 
be avoided (26). In addition, when the level of DHEA 
in humans reaches 7 μg/L, the saturation of invertase 
occurs during the conversion of DHEA into active sex 
hormones, helping avoid a state of excess sex hormone 
levels in women.

2.3. Pathway of DHEA

DHEA and its oxidative metabolites have been found 
to activate some nuclear receptors, like the constitutive 
androgen receptor (AR), estrogen receptor (ER) alpha 
and beta, pregnane X receptor, peroxisome proliferator 
activated receptor (PPAR), and G protein-coupled 
ER (GPER1) (27,28). Since DHEA can be converted 
into androgen/estrogen, researchers have not clearly 
determined whether AR/ER are directly activated by 
DHEA or indirectly by the converted androgen/estrogen. 
However, the low affinity of ER for DHEA makes the 
latter a poor agonist of ER (27). In addition, the effects of 
DHEA on the proliferation and apoptosis of endothelial 
cells (ECs) and vascular smooth muscle cells (VSMCs) 
are not associated with ER and AR (29,30). DHEA and 
its analogues are not converted to estrogen or androgen 
but nonetheless have beneficial action on CVD, 
suggesting that DHEA interacts with its own specific 
receptor.

3. Pathogenesis of AS

Many theories on the mechanism of AS have been 
proposed from different perspectives. In recent years, 
most scholars have supported the "endothelial injury 
response" theory (31), which posits that endothelial 
dysfunction is an initial step in the pathogenesis of AS. 
The major risk factor for this disease is damage to the 
arterial intima, and the formation of atherosclerotic 
lesions results from the inflammatory-fibrotic 
proliferative response of arteries to intimal injury (Figure 
2). AS is commonly regarded as a chronic inflammatory 
disease of the arterial wall caused by an imbalance in 
lipid metabolism and changes in inflammatory responses, 
whereby the body is unable to prevent the recruitment of 
inflammatory cells alone. However, a recent hypothesis 
suggests that AS is not just an inflammatory reaction 
of the blood vessel wall. Neither inflammatory cells 
nor necrotic cells are removed, and thus effector cell 
proliferation and tissue regeneration are eventually 
induced (32,33).
 Blood vessels begin to change in the early stages of 

Figure 2. Pathogenesis of AS.
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decreased by about 20% after receiving DHEA (25 
mg/d) for 12 months. A similar finding was noted in 
another study (45). However, one study (46) found 
that administration of DHEA does not change blood 
lipid parameters, which is consistent with the results 
of a previous study by the current authors (47). Use of 
lipid-lowering drugs may be a potential source of the 
inconsistency in the response of TG levels to DHEA 
(48). Therefore, whether DHEA can change blood lipid 
parameters or not needs to be studied more rigorously.
 In addition to affecting blood lipid levels, DHEA 
can also directly inhibit lipid deposition (49). Fujioka et 
al. (50) found that DHEA can reduce the proliferation 
of adipocytes, which may be mediated by AR via 
an intracrine mechanism. DHEA also can promote 
lipid mobilization in adipose tissue by increasing the 
expression and activity of adipose triglyceride lipase 
(ATGL) and hormone-sensitive lipase (HSL) (51).
 At present,  there are conflicting results on 
improvement of blood lipid levels by DHEA. However, 
blood lipids are an important factor in the development 
and progression of AS, so the effect of DHEA on blood 
lipids needs to be studied further. Moreover, most of 
these studies involve normal people, and research needs 
to pay more attention to postmenopausal women.

4.2. DHEA corrects endothelial dysfunction in 
postmenopausal women

The loss of estradiol during postmenopausal may lead 
to a decline in endothelial function. For example, a 
decline in estradiol may alter the redox balance, thereby 
increasing oxidative stress and impairing endothelial 
function (52).
 Endothelial  dysfunction is  involved in the 
pathogenesis of AS and CVD (53). One of the strategies 
for treating AS is to correct endothelial dysfunction (54). 
DHEA does not improve endothelial function through 
AR- or ER-mediated mechanisms (55,56). The effects of 
DHEA on ECs are shown in Figure 3.

4.2.1. DHEA inhibits EC oxidation

A study (57) has suggested that menopause is a risk 
factor for oxidative stress (OS). In postmenopausal 
women, not only progressive loss of estrogen and its 
protective effects (58), but also a further reduction in 
tocopherol and retinol levels as well as total antioxidant 
activity lead to OS (59). In a study by Taleb-Belkadi 
et al., high levels of TBARS and carbonyl production 
and low levels of enzymatic defense found in 

Figure 3. The effects of DHEA on ECs. First, DHEA inhibits EC oxidation by preventing the conversion of LDL to ox-LDL and the release of 
MDA, as well as by protecting endogenous vitamin E and the level and activity of antioxidant enzymes. Moreover, DHEA inhibits the production 
of MCP-1, ROS, ICAM-1, VCAM-1, PECAM-1, and E-selectin by ECs to prevent leukocytes from adhering to ECs, which involves NF-kB and 
AP-1. In addition, DHEA promotes NO production through the activation of eNOS via a GPCR-ERK1/2 MAPK cascade and the PKC/cGMP/
eNOS/NO signalling pathway. NO subsequently inhibits platelet aggregation and the invasion and adhesion of leukocytes and it promotes the 
dilation of blood vessels. Moreover, DHEA protects ECs from apoptosis by activating the DHEAR/Gαi/PI3K/Akt/Bcl-2 signalling pathway.
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postmenopausal women indicated that the women were 
exposed to OS. OS, and especially the oxidation of LDL 
in the arterial wall, can lead to worse AS through the 
stages of the menopausal transition in healthy women 
(60). In addition, the production of the superoxide anion 
O2- and an increase in the levels of peroxynitrite are also 
characteristics of atherosclerotic lesions (61,62).
 According to a previous study (63), the synthesis 
of reactive oxygen species (ROS) promotes AS by 
increasing superoxide production and suppressing EC 
function. The production of large amounts of ROS 
overwhelms the antioxidant defenses in cells, causing 
neutrophil activation, protein modification, lipid 
peroxidation, and DNA damage, which are key factors 
that promote the development of AS and CVD (64,65) 
(Figure 3).
 DHEA effectively inhibits the oxidation of low-
density lipoprotein (LDL) to oxidized low-density 
lipoprotein (ox-LDL) (47,66), it inhibits ox-LDL-induced 
ROS production (67), it reduces superoxide production, 
it ameliorates endothelial dysfunction, and it prevents the 
development of AS.
 In some experiments,  DHEA increased the 
antioxidant capacity of LDL by protecting endogenous 
vitamin E (68) and by significantly reducing the 
chemotactic activity of monocytes (69), directly 
removing the free radicals produced by the lipoprotein 
oxidation process (70), and counteracting the cellular 
damage caused by LDL and ox-LDL, all of which enable 
DHEA to function as an antioxidant (66,68). In addition, 
DHEA restores the levels and activities of glutathione 
peroxidase, SOD, and catalase (71,72). Moreover, DHEA 
significantly inhibits the secretion of malondialdehyde 
(MDA) in ECs (47). As a cytotoxic end product of lipid 
peroxidation, MDA causes cross-linking polymerization 
of macromolecules such as proteins and nucleic acids 
and it affects the respiratory function of the mitochondria 
in vitro. At the same time, DHEA also increases the 
antioxidant capacity of certain subcellular structures (73).
 In summary, DHEA has antioxidant action by 
inhibiting the production of ox-LDL and MDA, 
removing free radicals, reducing monocyte adhesion, and 
protecting antioxidant enzymes.

4.2.2. DHEA inhibits EC inflammation

The level of inflammation is higher in postmenopausal 
women, which is evident in higher levels of TNF-α, 
IL-1 α, and CRP (74,75). Novella et al. suggested that 
this may be due to the change in estrogen-mediated 
regulation of female inflammatory biomarkers (76) 
which were identified as independent risk factors for 
CVD in postmenopausal women (77). DHEA can reduce 
inflammation, and especially in ECs, and ECs are closely 
related to AS.
 DHEA alleviates inflammation of ECs independent 
of the ERα or  ERβ pathway.  In vi tro ,  DHEA 

significantly inhibits monocyte chemoattractant protein-1 
(MCP-1) secretion, ROS production, and expression of 
intracellular adhesion molecule-1 (ICAM-1), vascular 
cell adhesion molecule 1 (VCAM-1), platelet and 
EC adhesion molecule 1 (PECAM-1), and E-selectin 
(78). Moreover, DHEA also reduces the expression of 
adhesion molecule receptors in the U937 monocyte-like 
cell line, which suppresses the adhesion of monocytes to 
injured ECs (47). In one study (79), DHEA significantly 
reduced the LPS-induced transcription of nuclear 
factor kappa B (NF-κB). Moreover, DHEA impairs 
monocyte adhesion by suppressing the activity of NF-
κB, thereby inhibiting the development of AS (47). A 
recent study (80) also indicated that DHEA restrains 
neutrophil recruitment and adhesion to ECs by reversing 
inflammation-induced down-regulation of developmental 
endothelial locus 1 (a secreted homeostasis factor) 
expression.

4.2.3. DHEA protects ECs by inducing NO production

The abi l i ty  of  vascular  ECs to resis t  AS and 
antithrombotic factors largely relies on the production 
and release of active substances such as NO. NO blocks 
the expression of pro-inflammatory molecules as well 
as adhesion molecules in ECs. NO also inhibits the 
infiltration and adhesion of leukocytes (81).
 Healthy endothelium, which normally produces NO, 
avoids the development and complications of AS (82). 
Nevertheless, the production of estrogen is reduced in 
postmenopausal women, and thus the activity of NO 
synthase decreases (83,84), which leads to a decrease 
in NO synthesis in ECs. A study found that a lack of 
NO and damaged endothelial progenitor cells resulted 
in vasodilation dysfunction in postmenopausal women, 
who are more prone to CVD, and especially AS.
 DHEA activates eNOS through genomic and non-
genomic mechanisms, and DHEA directly regulates 
human vascular walls by controlling the synthesis and 
stability of the eNOS protein in ECs (85). DHEA also 
effectively increases serum NO levels by activating 
PKC/cGMP/eNOS/NO pathways to prevent platelet 
aggregation, improve EC function, and alleviate early 
pathological changes associated with AS (44,47,86).

4.2.4. DHEA promotes EC proliferation and inhibits EC 
apoptosis

During aging, EC apoptosis increases, which affects the 
development of AS (87,88). The production of TNF-α 
induced by LPS and testosterone promotes apoptosis of 
ECs, whereas DHEA has the opposite effect on ECs. 
DHEA increases EC proliferation in vitro (44) and 
protects ECs from apoptosis (89). This anti-apoptotic 
effect of DHEA does not rely on ER or conversion into 
E2, but it is associated with the GTP-binding protein 
(Gαi) and the downstream phosphatidylinositol 3-kinase 
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(PI3K)/Akt signalling cascade (90).

4.3. DHEA inhibits the proliferation and migration of 
VSMCs

Lee et al. (91) noted marked proliferation of aortic 
VSMCs in ovariectomized mice. During aging, the level 
of sirtuin 1, a novel modulator of neointima formation 
caused by arterial injury, decreased (92). The reduction 
in this protein indirectly promotes the proliferation and 
migration of VSMCs (93). VSMC proliferation and 
migration of surrounding extracellular matrix (ECM) 
are the main reasons for thickening of the intimal wall, 
which will lead to AS (94).
 DHEA is involved in relaxing VSMCs and 
inhibiting the proliferation and migration of VSMCs 
(30,95). DHEA does not have a significant effect on the 
phenotypic transition of VSMCs but rather reduces OS 
and inflammation in VSMCs by directly interrupting the 
ROS-dependent ERK1/2 signalling and p38 mitogen-
activated protein kinase (MAPK)/NF-κB signalling 
pathways, thereby inhibiting the proliferation of 
VSMCs (95). Regardless of whether VSMCs undergo 
a phenotypic shift, DHEA can have a beneficial effect 
on these cells. DHEA-specific receptors are present in 
human VSMCs, and DHEA regulates the proliferation 
and apoptosis of VSMCs via a mechanism independent 
of ER and AR (30,44).
 All of the aforementioned effects of DHEA on AS 
are shown in Figures 4 and 5 and Table 1.

5. Use of DHEA in the treatment of AS

As early as 1996, one study (102) proposed that DHEA 
is the source of youth, but the clinical use of DHEA is 
still hotly debated.
 Several of the aforementioned studies have indicated 
that DHEA has anti-atherosclerotic action in animal 
models. DHEA improves cardiovascular risk-related 
parameters (42) and can be used as a drug for primary 
prevention of CVD (103). However, some studies have 
indicated that DHEA has no effect on CVD risk (104-
106) and no effect on endothelial function (92,107-109). 
A meta-analysis (110) by Wu et al. noted no correlation 
between the level of DHEA-S and AS. However, other 
meta-analyses (15,111) noted that the lower the level of 
DHEA, the worse the prognosis for patients with CVD.
 Qin et al. (38) suggested that DHEA had no effect 
on the blood lipid profile, and especially that of healthy 
postmenopausal women (112). This finding is consistent 
with the results of a previous study by the current authors 
(47). Nevertheless, there may be health benefits for 
women with adrenal insufficiency (113,114).
 There are many factors responsible for the differing 
results of those studies. At present, many studies are 
based on rats and other rodents as models, but they 
are not the best model because they have almost no 
endogenous DHEA (115). In addition, the dosage 
of DHEA in those experiments is usually too high 
and it differs (112,113). Moreover, DHEA is rapidly 
metabolized, leading to somewhat differing results 
of many studies (43). A recent meta-analysis (116) 
suggested that publication bias and small flawed studies 
may also explain the discrepancy.
 Therefore, whether postmenopausal women should 

Figure 4. DHEA has specific action against aspects of AS in postmenopausal women. Postmenopausal women have dyslipidemia, abnormal 
proliferation and migration of VSMCs, and endothelial dysfunction. DHEA can play a role in alleviating these adverse aspects. First, it can 
improve dyslipidemia by affecting blood lipid levels and inhibiting lipid deposition. Second, DHEA can inhibit the oxidative stress response and 
induce cell cycle arrest in the G1 phase. In addition, DHEA can inhibit the oxidation and inflammation of ECs, induce NO protection, promote 
the proliferation of ECs, and inhibit the apoptosis of ECs.
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take DHEA to treat or prevent forms of CVD such as AS 
is unclear. In addition, there is no clear standard for its 
indications and dosage (117).
 DHEA causes adverse reactions such as hirsutism 
and acne. DHEA is believed to increase the risk of breast 
cancer in postmenopausal women (118,119). That said, 
experiments have indicated that the use of DHEA for 52 

weeks has no effect on the endometrium (94). Evaluating 
the appropriate dose for patients is difficult because of 
the possibility of those adverse reactions, and indications 
for DHEA need to be carefully evaluated (120). Timing 
of use is also important. Treatment should start during 
menopausal transition, that is, within six years after 
menopause (93,121).

Table 1. The effects of DHEA on AS

Pathophysiological role of DHEA

Effects on blood lipids

Effects on endothelial function
     Inhibition of EC oxidation

     Inhibition of EC inflammation

     Protecting ECs through NO
     production

     Promotion of EC proliferation
     and inhibition of EC apoptosis

Inhibition of VSMC proliferation 
and migration

Specific changes/mechanisms

A subject of debate

Prevention of LDL conversion to ox-LDL (47,66,67)
Protection of endogenous vitamin E (68)
Inhibition of leukocyte adhesion to ECs (69)
Restoring the level and activity of antioxidant enzymes (70,72)
Inhibition of MDA release by ECs (47,70)

Inhibition of leukocyte adhesion to ECs: inhibiting the production of MCP-1, ROS, ICAM-1, VCAM-1, 
PECAM-1, and E-selectin by ECs; decreasing the expression of CCR2, LFA-1, and VLA-4 in the U937 
monocyte-like cell line (47)
Inhibition of IL-8, ICAM-1 and VCAM-1 production induced by TNF-α by blocking the LPS/TNF-α/
PPARα/NF-κB signalling pathway (47,96)
Inhibiting EC adhesion and oxidative stress by blocking AP-1 activity (67,97,98)

Inhibitory effect of NO on platelet aggregation and dilation of blood vessels (86)
Inhibitory effect of NO on the expression of NF-κB, ICAM-1 and VCAM-1; prevention of the invasion and 
adhesion of leukocytes (99)
Activation of eNOS via a GPCR-ERK1/2 MAPK cascade (85)
Increasing NO production through the PKC/cGMP/eNOS/NO signalling pathway (44,86)

EC proliferation (85)
Protecting ECs from apoptosis by activating the DHEAR/Gαi/PI3K/Akt/Bcl-2 signalling pathway (89)

Promoting relaxation and inhibiting the proliferation of VSMCs by directly interrupting ROS-dependent 
ERK1/2 signalling and the p38 MAPK/NF-κB signalling pathway (30,95)
Inhibiting the phenotypic transition and proliferation of VSMCs by blocking platelet-derived growth factor 
receptor-β (PDGFR-β) and regulating glutathione/glutathione (GSH/GRX) and low molecular weight 
protein tyrosine phosphatase (LMW-PTP) (100)
Causing apoptosis: inducing cell cycle arrest in the G1 phase; upregulating the expression of the cyclin-
dependent kinase (CDK) inhibitor p16INK4a, activating caspase-3, and inducing PPARα expression in 
VSMCs (101)

Figure 5. The effects of DHEA on atherosclerosis. 
First, DHEA affects the development and progression 
of AS by regulating blood lipid parameters, 
but substantial differences in results have been 
noted. Moreover, DHEA preserves EC function 
by inhibiting the oxidation and inflammation of 
ECs through NO production and promoting EC 
proliferation and inhibiting EC apoptosis. In addition, 
DHEA inhibits the progression of AS by inhibiting 
the proliferation and migration of VSMCs.
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 At present, studies on the clinical use of DHEA are 
still lacking. Therefore, use of DHEA should be carefully 
considered, the patient's eligibility should be determined, 
the patient's adrenal function should be considered, and 
whether the patient can tolerate the drug's adverse effects 
should be considered.

6. Conclusion

As a hormone precursor, DHEA is an endogenous steroid 
hormone and important source of estrogen and androgen 
in postmenopausal women. In addition, DHEA itself 
has a variety of biological actions that are independent 
of ER/AR and its conversion into estrogen/androgen, 
and it functions in almost all systems of the body (43). 
The current review has analyzed the mechanisms of 
postmenopausal women's susceptibility to AS. It has also 
discussed how DHEA plays a role in combating AS by 
countering these mechanisms, which include regulating 
the blood lipid status, protecting ECs (including coping 
with OS and inflammatory reactions of the vascular 
endothelium, inhibiting apoptosis of ECs, and inducing 
NO production) and inhibiting the proliferation and 
migration of VSMCs. In addition to its activity against 
AS, DHEA might have other protective effects on the 
cardiovascular system, such as preventing and reversing 
pulmonary hypertension (55) and reducing insulin 
resistance (122). However, further studies need to 
examine the mechanism and long-term effects of DHEA 
and additional clinical trials need to examine DHEA 
supplements. DHEA may serve as a better treatment for 
postmenopausal women and the entire population in the 
near future.
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