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1. Introduction

Power laws occur and are observed in various scientific 
fields, and they are useful for understanding natural and 
man-made phenomena. The characteristics of power 
laws are used in economics and finance, and the scaling 
factors are used for prediction (1-3). The medical field 
is no exception, and power laws are also observed in 
ultrasonography.
 Ultrasonography is a method widely used to image 
body tissues because it is relatively safe, versatile, 
low cost, and mobile. However, ultrasonography has 
the disadvantages of a low resolution and unclear 
images compared to other imaging methods such 
as X-rays, magnetic resonance imaging (MRI), and 
computerized tomography (CT) scans. One task for 
which ultrasonography is often used is to diagnose liver 
cancer. In Japanese guidelines for diagnosis of liver 
cancer, ultrasonography is the method of choice for 
screening at-risk patients (4). However, pathologists 
need experience and medical knowledge to accurately 
diagnose liver cancer. Factors such as contrast-based 
images, cross-sectional images, and changing shapes 
depending on the probe angle hamper the identification 
of parts of the liver in ultrasound images, even with 
medical knowledge. Experience helps to combine 

medical knowledge with diverse structures in ultrasound 
images to correctly understand the intrahepatic region. 
Despite the convenience of ultrasonography, its 
drawback is that the examination can only be performed 
at a large hospital by a liver specialist.
 Several studies have sought to determine the 
features of structures in ultrasound images in order 
to facilitate a diagnosis (5-7). Studies have sought 
to determine the characteristics of ultrasound waves 
propagated by a structure using the power-law shot 
noise (PLSN) model (8-10). An ultrasound image is 
obtained by converting the amplitude of the ultrasound 
waves emitted by the probe and reflected by structures 
scattering those waves in a given region into brightness. 
Previous studies have proposed that the amplitude of 
this reflected ultrasound wave can be represented by the 
PSLN model. Since the frequency characteristics of this 
amplitude follow a power law and the scaling factor of 
a power law differs depending on the characteristics of 
the structure propagating waves, they can presumably 
be used as a feature to distinguish between tissues. A 
previous study applied this PSLN model to ultrasound 
images of the breast, allowing breast cancer tissue to be 
distinguished from normal breast tissue. Such features 
can presumably be used to aid in diagnosis in areas 
such as liver cancer that require skill and experience. 
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Power laws have been observed in various fields and help us understand natural phenomena. 
Power laws have also been observed in ultrasound images. This study used the power spectrum 
of the signal identified from the reflected ultrasound signal observed in ultrasonography based on 
the power-law shot noise (PLSN) model. The power spectrum follows a power law, which has a 
scaling factor that depends on the characteristics of the tissue in the region where the ultrasound 
wave propagates.  To distinguish between a tumor and blood vessels in the liver, we propose a 
classification model that includes a scaling factor based on ResNet, a deep learning model for image 
classification. In a task to classify 6 types of tissue - a tumor, the inferior vena cava, the descending 
aorta, the Gleason sheath, the hepatic vein, and small blood vessels – tumor sensitivity increased 
3.8% and the F-score for a tumor improved 2% while precision was maintained. The scaling factor 
obtained using the PLSN model was validated for classification of liver tumors.
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At present, the PLSN model has not been applied to 
ultrasound images other than those of breast cancer.
 The current study has focused on the fact that 
cancer tissue and normal tissue can be distinguished 
by the PLSN model and that this model can be used to 
diagnose ultrasound images of liver cancer, a task that 
requires skill for a precise diagnosis. First, in order 
to verify whether the PLSN model can be applied to 
ultrasound images of liver cancer, this study evaluated 
whether the frequency characteristics reveal the scaling 
factor according to the power law. Next, this study 
compared and evaluated whether liver cancer, blood 
vessels, and liver tissue can be distinguished based on 
scaling factors. In addition, this study constructed a 
neural network-based classifier using the scaling factors 
and it evaluated whether the scaling factors facilitate 
classification of structures.
 The paper is organized as follows. Section 2.1 
provides an overview of the PLSN model applied to 
ultrasonography. Section 2.2, 2.3 provides a method for 
determining scaling factors for ultrasound images of 
the liver using the PLSN model. Section 2.4 presents 
a configuration of a neural network-based classifier 
using scaling factors. Section 2.5 provides training and 
evaluation data for the neural network-based classifier. 
Section 3 provides an evaluation and results for 
classification of liver cancer, the inferior vena cava, the 
descending aorta, the Gleason sheath, the hepatic vein, 
and small blood vessels. Finally, concluding remarks 
are described in Section 4.

2. Materials and Methods

2.1. The PLSN model for ultrasonography

In ultrasonography, tissues in the body are usually 
modeled as regions containing randomly distributed 
structures that scatter ultrasound waves (scatterers), 
with each one independently affecting backscattering. 
In the PLSN model, the sum of all such backscattered 
signals that are received by the transducer is the 
reflected signal (10-13):

 

where t is the time of observation; ti are the times 
when independent backscattered pulses h(∙) occur and 
are assumed to be random events taken from a non-
homogeneous Poisson process with rate λ(t); xi is the 
vector denoting the position of the ith scatterer from the 
transducer; and ψi is a random vector that characterizes 
the amplitude, phase, scale and duration of each 
backscattered pulse.
 Let us focus on reflected signals generated from 
scatterers at approximately the same depth in tissue. 
We will also assume that the medium is stationary in 
the corresponding small segment of tissue and that the 

scatterer's density, attenuation properties, and medium 
properties are constant. In addition, we will assume that 
there are no strong specular reflectors in the scattering 
region. Based on these assumptions, xi can be regarded 
as roughly constant, and the general model in (2.1) can 
be simplified as follows (10,12,13):

 

Because of the stationarity assumption, the ti's h(∙) are 
random events from a homogeneous Poisson process 
with a constant rate λ. Moreover, since each pulse is a 
reflected pulse of the ultrasound signal from the probe, 
it can be assumed to be of the form (10):

where ec(t-ti,ai)=e(t-ti,ai) cos(ϕi-ωcti) and es(t-ti,ai)=e(t-
ti,ai) sin(ϕi-ωcti) are respectively the in-phase and 
quadrature components; ωc is the center frequency of 
the ultrasound signal; e(t-ti,ai) is the envelope of the 
backscattered pulse with ai specifying its amplitude, 
and ϕi is a random phase. The sum of the scattered 
signals given by (2.2) is as follows (10):

 Furthermore, we will assume that the envelope can 
be described by (10,14):

where u(t) is the unit step function; ϕi, ai, and ti are 
respectively assumed to be independent random 
variables with probability density functions uniform in 
[0, 2π), fa(a)=fa(-a), and the Poisson process; and ν is a 
parameter determined by the characteristics of the area 
of propagation.
 For 0 < ν ≤ 0.5, research has shown that the sample 
power spectrum S(f) with regard to rc(t) or rs(t) exists 
and follows a 1⁄f β -type behavior with β=2(1-ν) (14), as 
described by

 

where Γ(∙) is the gamma function (15), and E[a2] 
denotes the expected value of the square of the random 
amplitude a.

   be  t he  enve lope  o f 
the backscattered signal. The power spectrum of the 
envelope was derived and has been shown to take a 
power-law form with exponent βenv based on numerical 
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to determine scaling factors from the power spectrum 
following the power law.
 In the first step, to obtain the scaling factor based on 
the PLSN model, the reflected ultrasound signal has to 
be obtained from the region of propagation. This signal 
is a signal reflected back to the probe, and the pixel 
value on the ultrasound image represents the signal as 
shown in Figure 1. In the previous study that applied 
the PLSN to ultrasound images of the breast, the path 
of this reflected signal was in the vertical direction of 
the image, but in the ultrasound image of the liver, it 
radiates out from the top of image as shown in Figure 
1. In order to determine the radial ultrasound signal, the 
signal is transformed vertically using piecewise affine 
transformation as shown in Figure 2. The scikit-image 
library is used for implementation (16). Specifically, the 
eight points in Figure 2 are correspondingly converted 
with piecewise affine transformation. The vertical pixel 
values of the transformed image are used as the reflected 
ultrasound signal r(t) to calculate the scaling factor from 
step 2 onward.
 In the second step, the vertical component is the 
ultrasound signal r(t), and the cos component rc(t), sin 
component rs(t), and envelope component |r(t)| of the 
ultrasound signal are calculated based on Equations 
2.8-11. The power spectrum is calculated using the 
periodogram implemented by scipy (17) for these 
three components. Next, for each power spectrum and 
frequency, the logarithm is calculated. The slope is 
determined using linear regression provided by scikit-
learn (18), and this is used as the scaling factor. A sample 
calculation based on the above is shown in Figure 3. In 
Figure 3, 300 pixels of continuous data in the direction 
of the y-axis are identified from the converted ultrasound 
image as the reflected ultrasound signal r(t), and the 
power spectrum of the cos component, sin component, 
and envelope component are calculated and shown in 
a log-log graph. The slope of the graph is the scaling 
factor. Figure 3 shows that each component can be 
plotted as a straight line, although there is a lot of noise 

evaluation (9).
 In -phase  and  quadra tu re  components  can 
presumably be obtained from actual data r(t) using a 
Hilbert transform as follows (9).

where  is the Hilbert transform of r(t). The envelope 
is obtained by

 

 The above calculation requires the center frequency 
ωc of the ultrasound wave. The center frequency 
changes as the ultrasound wave propagates, and the 
exact value is not known. Therefore, the following 
method has been proposed (9).

 

Here, Snb(f) denotes the periodogram of the modulated 
ultrasound signal.
 When applying the PLSN model to an actual 
ultrasound image, the reflected ultrasound signal r(t) 
observed from the probe corresponds to the pixel values 
on the ultrasound signal path shown in Figure 1. The 
power spectrum can be obtained by calculating each 
component based on Equations 2.8-11 and performing a 
fast Fourier transform.

2.2. Calculation of scaling factors from ultrasound 
images of the liver

There are three steps in obtaining the scaling factor from 
the ultrasound image of the liver based on the PLSN 
model. The first step is the transformation of ultrasound 
images of the liver and the identification of reflected 
ultrasound signals. The second step is to calculate the 
power spectrum of reflected ultrasound signals and 

Figure 1. Power spectrum of the reflected ultrasound signal r(t) in ultrasound images of the liver incorporating a power-law shot noise 
model. The power spectrum was calculated for the cos component, sin component, and envelope of the signal.
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at low and high frequencies, indicating that the power 
law is obeyed.

2.3. Evaluation of the possibility of distinguishing 
structures using scaling factors

This  sec t ion  wi l l  examine  the  poss ib i l i ty  of 
distinguishing structures in the liver using scaling factors 
calculated from actual ultrasound images of the liver. In a 
previous study, the PLSN model was used to distinguish 
between cancer tissue and normal breast tissue. Unlike 
the breast, the liver can contain a tumor as well as the 
liver parenchyma many blood vessels and other organs. 
Therefore, the PLSN model has been applied to actual 
sample data and the frequency characteristics and 
scaling factors of the calculated reflected waves have 
been compared. The sample data was from the region 
indicated in Figure 4 using 3 images including liver 
cancer and blood vessels. All of the regions were cropped 
with a width of 50, and 50 reflected ultrasound signals 
r(t) were included within the region. For each of the 50 
signals, the scaling factors for the cos component rc(t), 
sin component rs(t), and envelope component |r(t)| were 
calculated, and the average of the 50 signals is shown in 
the Table 1. This study was approved by the institutional 
review board of the Graduate School of Medicine and 

Faculty of Medicine, The University of Tokyo (no. 
2019166NI), and informed consent was obtained in the 
form of an opt-out on the website. All data were obtained 
from ultrasound images taken during an intraoperative 
ultrasound as part of liver cancer screening. All images 
used in this study were obtained from three patients with 
liver cancer and two donors with normal livers.
 A comparison of the scaling factors for the cos and 
sin signals of the liver parenchyma in Table 1 to the 
scaling factors of other structures reveals that the liver 
parenchyma and other structures can be distinguished 
with a scaling factor less than 1.8. In contrast, tumors 
and blood vessels are difficult to distinguish with a 
scaling factor of 1.8 or higher. The large standard 
deviation indicates that the scaling factor obtained varies 
depending on the location of its acquisition.

2.4. A deep neural network model for ultrasound image 
classification using a scaling factor map

As shown in 2.3, the scaling factors obtained from 
the PLSN model were found to have some utility as 
discriminative indices. However, the scaling factors 
obtained vary greatly depending on the position, 
precluding their use alone to identify tumors and blood 
vessels. Therefore, a scaling factor map was generated 

Figure 2. Ultrasound image of the liver transformed by piecewise affine transformation. The direction of signal propagation is unified 
vertically so that PLSN can be applied to the entire image.

Figure 3. Example of the power spectrum for an image after application of a piecewise affine transformation.



www.biosciencetrends.com

BioScience Trends. 2023; 17(2):117-125.BioScience Trends. 2023; 17(2):117-125. 121

from ultrasound images in which local scaling factors 
were calculated for each coordinate. Proposed here is a 
model in which this scaling factor map and ultrasound 
images are combined to classify structures in the liver.
 The scaling factor map is  generated based 
on ultrasound images with the piecewise affine 
transformation described in 2.2. Let ri,j be the pixel 
value at coordinate (i,j). The scaling factors for the 
cos component rc(t), sin component rs(t), and envelope 
component |r(t)| are calculated using the value of ri,j to 
ri,j+T as the ultrasound signal ri,j(t), where T is the size 
of the clipping window. Each calculated scaling factor 
is used as a new pixel value (βcos,βsin,βenvelope) at (i,j). Let 
the size of the original ultrasound image be W × H. 
The scaling factor map is generated by performing this 
calculation in the region W × H - T. A sample generated 
by this process is shown in Figure 5.
 Image classification is accomplished by training an 
image classification deep neural network with both the 
scaling factor map obtained as described above and an 
original ultrasound image of size W × H - T. ResNet-50 

(19) has been used as the model of the deep neural 
network since it has exhibited excellent performance for 
the image classification involving 100 classes, known 
as CIFAR-100 (20). While ResNet-50 normally learns 
from normal images (images consisting of three types 
of information RGB: red, green, and blue), the proposed 
method uses 5 channels of RGB plus cos scaling factor 
βcos and envelope scaling factor βenvelope. The reason why 
the sin component is not used here is that theoretically, 
the sin scaling factor βsin and scaling factor βcos are the 
same value, and the more information input in the neural 
network model, the more likely it is to become noise. The 
structure of the constructed model is shown in Figure 6. 
ResNet-50 is implemented using a model provided by 
PyTorch (21). A transfer learning method that utilizes a 
model that has previously been trained with CIFAR-100 
in used during training. In this instance, the input layer 
is discarded because the learning model has 3 channels 
of RGB information in the input layer; the current model 
has been changed to receive 5 channels of information. 
Adam is used for learning, and a cross-entropy loss 

Table 1. Average of scaling factors calculated for the liver parenchyma, blood vessels, and tumors

Scaling factor
Structure

Blood vessel (A)
Blood vessel (B)
Tumor (A)
Tumor (B)
Tumor (C)
Liver parenchyma (A)
Liver parenchyma (B)
Liver parenchyma (C)

cos signal

2.75 ± 0.83
2.21 ± 0.87
2.06 ± 0.66
1.94 ± 0.70
2.28 ± 0.55
1.32 ± 0.87
1.77 ± 0.67
1.72 ± 0.68

sin signal

2.11 ± 0.49
2.19 ± 0.84
1.93 ± 0.87
1.97 ± 0.63
2.09 ± 0.55
0.99 ± 0.56
1.36 ± 0.67
1.69 ± 0.67

envelope

1.84 ± 0.55
2.34 ± 0.89
2.26 ± 0.47
2.00 ± 0.26
1.88 ± 0.41
1.28 ± 0.23
2.12 ± 0.39
1.28 ± 0.30

Figure 4. Regions of the liver parenchyma, blood vessels, and a tumor for scaling factor comparisons using the PLSN model. Vertical 
pixel information within each rectangle is used for comparison. Each region contains 50 ultrasound signals.
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function is used as the loss function for classification.

2.5. Training and evaluation data from ultrasound images 
of the liver

To provide training and evaluation data for the proposed 
model, six types of structures in ultrasound images of the 
liver were labeled by an experienced physician based on 
the data described in 2.3: a tumor, the inferior vena cava, 
the descending aorta, the Gleason sheath, the hepatic 
vein, and small blood vessels. Sample images of the 
various structures are shown in Figure 7. For the training 
and evaluation data for the classification task, the image 
shown in Figure 7 is used instead of the entire image 
shown in Figure 5. In the cropped image, the region 
containing the structure is identified and only the target 
structure is included as much as possible. In addition, 
scaling factor maps are also used for learning and 
evaluation by cropping the ultrasound images according 
to their size. These sets of ultrasound images and scaling 
factor maps were obtained for each structure in the liver 
and their label information was used as learning and 
evaluation data. The training data obtained by the above 
method consisted of a total of 3,349 structures, including 
251 tumors, 207 inferior vena cavas, 168 descending 
aortas, 1269 Gleason sheaths, 1145 hepatic veins, and 
309 small blood vessels. Similarly, the data for evaluation 

consisted of a total of 770 structures, including 78 are 
tumors, 44 inferior vena cavas, 29 descending aortas, 264 
Gleason sheaths, 277 hepatic veins, and 78 small blood 
vessels.

3. Results

To evaluate the performance of  the proposed 

Figure 5. Conversion of an ultrasound image to a scaling factor map with a crop window size of T=40. The scaling factor map depicts the 
scaling factors for the cos, sin, and envelope components as a three-color image.

Figure 6. Configuration of a neural network for classification of structures in the liver, using ResNet-50 as a base model to identify 
features from the input ultrasound images and scaling factor maps. In the output layer, a feedforward neural network is used to predict 6 
types of structures.

Figure 7. Sample images of a tumor, the inferior vena cava, the 
descending aorta, the Gleason sheath, the hepatic vein, and small 
blood vessels to be used as training and evaluation data. Scaling 
factor maps cropped to fit each image size are also used as input 
for the neural network.
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classification model using scaling factors, the proposed 
model was trained using a classification task involving 
6 types of structures in the liver using the training data 
described in 2.5. The proposed model was compared to 
a model trained on ultrasound images alone as input for 
the classification task. The evaluation data described 
in 2.5 were used to evaluate performance. To prevent 
overlearning of the data, noise addition, which is often 
used as a general method of data expansion, was used 
when training data for both models. The size of the 
cropping window T for the scaling factor map was 
40, batch size during training was 128, total training 
epochs was 400, and Adam, a commonly used method 
of optimization, was used. Figures 8 show the changes 
in accuracy for all labels in each learning epoch. The 
performance index was calculated every 10 epochs.
 The accuracy in Figure 8 indicates that learning 
is calmer after 300 epochs. The mean values of each 
performance indicator over 300 to 400 epochs are shown 
in Table 2. Table 2 shows that the overall accuracy 
decreased by 0.017 when ResNet-50 was compared 
to the proposed model. That said, the proposed model 
improved the sensitivity by 0.038 and it improved the 
F-score by 0.020 while maintaining precision with regard 
to tumor identification.

4. Discussion

The results in 2.3 demonstrate that the PLSN model can 

be used not only to distinguish cancer tissue from normal 
tissue in the breast, as reported in a previous study, but it 
can also distinguish between intrahepatic structures and 
the liver parenchyma, since the power law was observed 
in the ultrasound images of the liver. The scaling factor, 
which is expected to be an indicator with which to 
distinguish structures, can easily distinguish between 
the liver parenchyma and other structures (tumors and 
blood vessels), but it has difficulty clearly distinguishing 
between tumors and blood vessels because of the large 
variation in scaling factors depending on the location. 
One reason for the large variation is that the power 
spectrum of the reflected ultrasound signal calculated 
using the PLSN model contains a lot of noise at low 
and high frequencies, as shown in Figure 3. The scaling 
factor is the slope of the power spectrum, and its value is 
presumably greatly affected by noise. Due to this noise, 
there is a large standard deviation in the scaling factor 
for the same structure based on the ultrasound signal 
even though the regions used for verification in 2.3 were 
selected so that they all consisted of a single structure (a 
tumor, a blood vessel, or the liver parenchyma).
 Since distinguishing between structures in the liver is 
difficult using scaling factors alone, a predictive model 
was constructed in 2.4 using a combination of ultrasound 
images and the scaling factor map. Its effectiveness was 
examined in 3, and the proposed model improved the 
sensitivity for a tumor, but the overall accuracy was lower 
than when only image data were used. The inclusion of 
a scaling factor improved sensitivity by 3.8% and the 
F-score by 2.0% for a tumor, and it improved precision 
by 6.7% and F-score by 2.8% for the inferior vena cava. 
For the descending aorta and Gleason sheath, precision 
and sensitivity improved but F-scores decreased. For 
the hepatic vein and small blood vessels, both precision 
and sensitivity and F-scores decreased. The detection of 
tumors is particularly important in ultrasonography. In 
this respect, the proposed model with scaling factors was 
effective at identifying intrahepatic tumors. Structures (a 
tumor, the inferior vena cava, the descending aorta, and 
the Gleason sheath) that were identified with increased 
precision or sensitivity had several features in common: 
they were circular in shape and larger than the hepatic Figure 8. Accuracy per 10 epoch for all labels.

Table 2. Overall mean accuracy and precision, sensitivity, and F-score per epoch for each label averaged over 300 to 400 
epochs. Superior values from the two models are shown in bold. The proposed model had improved tumor sensitivity 
while maintaining precision

0.789 Overall accuracy

Tumor
Inferior vena cava
Descending aorta
Gleason sheath
Hepatic vein
Small blood vessel

Precision

0.951 
0.879 
0.936 
0.808 
0.740 
0.646 

Sensitivity

0.879 
0.980 
1.000 
0.769 
0.810 
0.506 

F-score

0.913 
0.925 
0.966 
0.787 
0.773 
0.561 

Precision

0.951 
0.946 
0.960 
0.745 
0.768 
0.555 

Sensitivity

0.917 
0.961 
0.952 
0.816 
0.737 
0.423 

F-score

0.933 
0.953 
0.955 
0.777 
0.748 
0.462 

0.772

Base model Proposed model
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vein and small vessels. Currently, scaling factors are 
calculated by identifying ultrasound signals with a 
fixed length of 40 px in the vertical direction. When the 
structure is small, and especially when it has a short y-axis 
like the hepatic vein, the signal propagating through the 
structure and also the signal from the liver parenchyma 
and other structures are identified and the scaling factor 
is calculated, which adversely affects classification. 
Therefore, use of a particular method of ultrasound signal 
identification depending on the region would allow 
the exclusion of regions with different scaling factors 
during classification. Object detection models such as 
Faster R-CNN (22), Mask R-CNN (23), and YOLO 
(24) could be used to select the region. In fact, several 
studies have examined the detection of tumors in regions 
of ultrasound images (25,26), and a combination of 
this approach and scaling factors could further improve 
classification sensitivity with regard to tumors.
 The PLSN model had previously been validated 
only for ultrasound images of breast cancer. However, 
the current study tested whether the PLSN model is 
also valid for ultrasound images of liver tumors. Results 
indicated that the liver parenchyma and other structures 
(tumor and blood vessels) can be distinguished based 
on the scaling factors calculated using the PLSN model. 
In addition, a classification model was proposed in 
which the scaling factor map is combined with a deep 
learning model to further distinguish intrahepatic 
structures. Validation with six types of structures (a 
tumor, the inferior vena cava, the descending aorta, 
the Gleason sheath, the hepatic vein, and small blood 
vessels) indicated that the sensitivity of tumor detection 
improved.
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