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1. Introduction

With the rapid development of artificial intelligence 
and deep learning technology, human-computer 
interaction through gesture recognition technology 
has gradually become a hot research topic nowadays. 
Gesture recognition based on surface electromyography 
(EMG) signals has advantages over vision-based gesture 
recognition, such as being less affected by changes 
in the external environmental background, requiring 
less computational effort, and offering higher real-
time performance (1-2). The surface EMG signals are 
bioelectrical information obtained from the skin surface, 
which has the advantages of non-invasive, non-traumatic, 
and simple operation. The surface EMG signals directly 
reflect the state of muscle contraction that causes limb 
movements and contains rich motor information, which 
can realize the prediction of hand movements intention. 

In recent years, pattern recognition technology based on 
surface myoelectricity has shown promising applications 
in the field of human-computer interaction, such as 
intelligent prostheses (3), rehabilitation exoskeletons (4), 
sign language interpretation (5), etc.
 In practical applications of EMG interaction, the 
recognition of the target gesture category is crucial, 
along with the need to mitigate various interferences, 
including irrelevant gestures, electrode displacement, 
muscle fatigue, and user variations (6-7). Among 
these interferences, the presence of irrelevant gestures 
is a common and significant concern. The target 
gestures refer to the user-defined hand gestures that 
are used to train the classifier and facilitate human-
computer interaction. The irrelevant gestures refer to 
the unintentional hand gestures made by users during 
system usage that do not belong to the predefined 
target categories. In such cases, the classifier is forced 
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With the development of deep learning technology, gesture recognition based on surface 
electromyography (EMG) signals has shown broad application prospects in various human-computer 
interaction fields. Most current gesture recognition technologies can achieve high recognition accuracy 
on a wide range of gesture actions. However, in practical applications, gesture recognition based 
on surface EMG signals is susceptible to interference from irrelevant gesture movements, which 
affects the accuracy and security of the system. Therefore, it is crucial to design an irrelevant gesture 
recognition method. This paper introduces the GANomaly network from the field of image anomaly 
detection into surface EMG-based irrelevant gesture recognition. The network has a small feature 
reconstruction error for target samples and a large feature reconstruction error for irrelevant samples. 
By comparing the relationship between the feature reconstruction error and the predefined threshold, 
we can determine whether the input samples are from the target category or the irrelevant category. In 
order to improve the performance of EMG irrelevant gesture recognition, this paper proposes a feature 
reconstruction network named EMG-FRNet for EMG irrelevant gesture recognition. This network is 
based on GANomaly and incorporates structures such as channel cropping (CC), cross-layer encoding-
decoding feature fusion (CLEDFF), and SE channel attention (SE). In this paper, Ninapro DB1, 
Ninapro DB5 and self-collected datasets were used to verify the performance of the proposed model. 
The Area Under the receiver operating characteristic Curve (AUC) values of EMG-FRNet on the 
above three datasets were 0.940, 0.926 and 0.962, respectively. Experimental results demonstrate that 
the proposed model achieves the highest accuracy among related research.
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to select one of the trained motions, resulting in 
erroneous recognition results and compromising the 
safety of both the device and the user (8-9). In the 
field of target gesture recognition, numerous studies 
have achieved high accuracy rates across various 
hand gesture actions (10-11). In our recent research 
at our laboratory, Zhang et al. (12) proposed the LST-
EMG-Net model, which further improves the accuracy 
of EMG-based gesture recognition. Therefore, the 
focus of this study lies in the recognition of irrelevant 
gestures. Existing methods in the field of irrelevant 
gesture recognition can be mainly categorized into 
probability-based approaches (13-17) and one-vs-all 
classification rule-based approaches (18-21).
 Probability-based methods: The core idea of this 
type of method is to effectively differentiate target 
and irrelevant samples by comparing the classifier's 
predicted probability values for the test samples with a 
preset probability threshold. Specifically, the classifier 
calculates a predicted probability value for the test 
sample, and if the predicted probability value is higher 
than the preset threshold, the sample is classified as a 
target sample; otherwise, it is classified as an irrelevant 
sample. Scheme et al. (13) proposed a method based 
on linear discriminant analysis (LDA) that generates 
a confidence score for each decision, providing the 
ability to reject decisions with scores below a threshold. 
Robertson et al. (14) found limitations in the confidence 
features of LDA and used support vector machine (SVM) 
confidence scores to make correct decisions. Tomczynski 
et al. (15) used the entropy function output by an 
artificial neural network classifier as a loss function 
and as a criterion for accepting or rejecting gestures. 
Bao et al. (16) generated confidence scores based on 
the posterior probability of the CNN, estimating the 
probability of each output of the classifier is correct. 
Zhou et al. (17) proposed a two-layer classifier that 
combines Gaussian mixture model (GMM) and k-nearest 
neighbor (KNN) models. The classifier determines that a 
gesture is irrelevant when the output probabilities of both 
layers are below a predefined threshold. The probability-
based method has the advantages of simple principle and 
low implementation cost. However, the classification 
probabilities of many target samples may be low, while 
those of irrelevant samples may be high. This ultimately 
affects the accuracy of irrelevant actions discrimination.
 Methods based on one-vs-all classification rules: 
The core idea of this type of method is to train a one-
class classifier for each target class, achieving effective 
discrimination between target and irrelevant samples. 
Specifically, the test sample is input into all classifiers 
to obtain binary classification results for each classifier, 
which are used to determine whether the test sample 
belongs to the corresponding target class of that classifier. 
If the test sample does not belong to any known target 
class, it is classified as irrelevant, otherwise, it is 
classified as a target sample. Ding et al. (18) used a set 

of classifiers composed of one-class Gaussian classifiers 
(GC) to determine whether the input sample belongs 
to the irrelevant class. The purpose of the Gaussian 
classifier is to fit a Gaussian distribution to samples 
belonging to the same target class. Ding et al. (19) used 
a set of classifiers composed of one-class support vector 
data description (SVDD) to exclude irrelevant motion 
interference. The purpose of SVDD is to find a minimum 
volume hyper-sphere to enclose samples belonging to the 
same target class. Wu et al. (20-21) used a set of classifiers 
composed of one-class autoencoder (AE) to address 
irrelevant motion interference. The purpose of AE is 
to reconstruct the input and judge whether the sample 
belongs to the target class based on the relationship 
between the reconstruction error and the threshold. 
Among the methods based on one-vs-all classification 
rules, some simple machine learning methods such 
as GC and SVDD are used to distinguish irrelevant 
gestures. However, these methods assume that the 
target gestures and irrelevant gestures are significantly 
different in the feature space, while the gestures in 
practical applications are indeed unpredictable. In 
contrast, the AE method can more fully exploit the small 
differences between the target and irrelevant gestures 
by calculating the reconstruction error, and improve the 
discriminative performance and stability of the model. 
However, this method is currently mostly used in high-
density myoelectric systems, and the AE reconstruction 
process is easily affected by noise, leading to the limited 
reconstruction performance of the model.
 The detection of irrelevant actions and anomaly 
detection solve very similar problems. Pang et al. 
(22) pointed out that anomaly detection, also known 
as outlier detection or novelty detection, refers to the 
process of detecting instances that deviate significantly 
from the majority of data. This has been a persistent 
and active research area for decades. The AE is a well-
established method in the field of anomaly detection 
(23-25). It is trained on normal data and during testing, 
the reconstruction error of abnormal data is typically 
much larger than that of normal data. By measuring 
the magnitude of the reconstruction error, it becomes 
possible to identify anomalous samples. However, 
methods based on AE and AE variants are usually 
susceptible to data noise presented in the training data. 
With the development of GAN networks, GAN-based 
anomaly detection has rapidly become a popular deep 
anomaly detection method. Schlegl et al. (26) proposed 
the AnoGAN for anomaly detection in clinically-
assisted retinal diseases. AnoGAN was the first paper 
to use GAN for anomaly detection. Zenati et al. (27) 
subsequently introduced EGBAD for anomaly detection 
on handwritten digit image datasets such as MNIST 
and network intrusion datasets like KDD99. Akcay et 
al. (28) proposed the GANomaly method for detecting 
dangerous items such as guns and knives in X-ray 
luggage or package datasets. GANomaly achieved state-
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the encoder. As a result, the feature maps restored by the 
decoder contain more low-level semantic information, 
leading to better reconstruction quality.
 3) To address the problem that the CLEDFF method 
may propagate a large amount of useless information and 
noise from the encoding process to the decoding layer, 
although it can achieve parallel transmission of feature 
information and improve the degree of information reuse, 
this paper proposes to use SE method. After the CLEDFF 
concatenates the feature channels of the encoding 
and decoding, the decoding stage introduces channel 
attention mechanism. This mechanism assigns different 
weights to each feature channel, capturing important 
feature information while suppressing unimportant 
channels. This approach helps improve the reconstruction 
accuracy.

2. Materials and Methods

The overall process of the proposed method for irrelevant 
gesture recognition is shown in Figure 1, which consists 
of three modules: data pre-processing module, feature 
reconstruction network EMG-FRNet module, and 
irrelevant gesture discrimination module. They are 
respectively introduced in sections 2.2, 2.3, and 2.4. 
First, the data pre-processing module is used to obtain 
EMG samples by processing the datasets with data 
segmentation and dimensional transformation, which 
provides the database for training and testing of the 
network model. Then, the EMG-FRNet module is used to 
extract the latent features of the input EMG samples and 
reconstruct the latent features of the EMG samples, and 
finally output the latent features z of the EMG samples 
and the reconstructed latent features ẑ. The module trains 
the network using datasets from the target category and 

of-the-art performance in statistics and computation. 
Li et al. (29-30) implemented user authentication and 
improved system and device security based on the 
GANomaly anomaly detection method and multi-
channel surface EMG signals of hand gestures. However, 
the detection performance of GANomaly in the field of 
EMG irrelevant gesture recognition still needs further 
exploration and improvement.
 Based on the aforementioned issues, this paper 
proposes a feature reconstruction network named EMG-
FRNet for EMG irrelevant gesture recognition. For the 
first time, we introduce GANomaly into EMG irrelevant 
gesture recognition. Building upon this, we incorporate 
additional structures such as channel cropping (CC), 
cross-layer encoding-decoding feature fusion (CLEDFF), 
and SE channel attention (SE) mechanisms. These 
enhancements contribute to the improved performance 
of irrelevant gesture recognition. The main innovative 
points are as follows:
 1) To address the problem that the input of the 
original GANomaly is a three-channel RGB image, 
while this paper is a single-channel myoelectric input, 
the number of feature channels in the network layer is 
redundant. In this paper, we propose a CC method to 
optimize the number of channels in the network feature 
layer, which can significantly reduce the number of 
network parameters while improving the accuracy of the 
network.
 2) To address the issue of spatial information loss 
during the downsampling process in the encoder of the 
original GANomaly generator, which affects the decoding 
performance, this paper proposes the use of CLEDFF. 
This method connects features of different scales from 
the encoding stage to the decoding stage, compensating 
for the lost information in the downsampling process of 

Figure 1. Overall flow chart of irrelevant gesture recognition method. EMG samples are obtained by pre-processing module; then latent features 
z and reconstructed latent features ẑ of EMG samples are obtained by EMG-FRNet module; finally, the reconstructed error between z and ẑ is 
calculated by irrelevant gesture discrimination module and compared with the threshold value to determine the class of EMG samples.
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tests the network using datasets from all categories. The 
network is tested with a small feature reconstruction 
error for the target category samples and a large feature 
reconstruction error for the irrelevant category samples. 
The feature reconstruction error is the difference between 
the latent feature z and the reconstructed latent feature 
ẑ. Finally, the irrelevant gesture discrimination module 
calculates the reconstruction error for z and ẑ and 
compares it with a predefined threshold to determine 
whether the EMG samples belong to the target gestures 
or the irrelevant gestures.
2.1. Dataset

The datasets used in this paper for EMG-FRNet are the 
public datasets NinaproDB1, NinaproDB5, and the self-
collected dataset. The self-collected dataset was obtained 
from stroke patients at Beijing Rehabilitation Hospital, 
Capital Medical University, and informed consent 
was obtained from all subjects in accordance with the 
Declaration of Helsinki, and ethics number 2022bkky-
048 was obtained.
 1) Public dataset DB1 (31): Eight basic hand postures 
of DB1 dataset Exercise B (as in Figure 2(a)) were used, 
and each gesture was acquired 10 times for a total of 10 
healthy subjects. Its acquisition device was a 10-channel 
OttoBock 13E200 with a sampling frequency of 100 Hz. 
The equipment is manufactured by Ottobock, Germany. 
2) Public dataset DB5 (32): Eight basic hand postures of 
DB5 dataset Exercise B (as in Figure 2(a)) were used, 
and each gesture was acquired six times for a total of 
10 healthy subjects. Their acquisition devices were two 
Myo EMG bracelets, where each Myo bracelet had 
8 channels and a sampling frequency of 200 Hz. The 
device is manufactured by Canadian company Thalmic 
Labs.  3) Self-collected dataset: 7 hand movements 
commonly used in life (as in Figure 2(b)) were used, 
and each gesture was acquired 6 times for a total of 

6 subjects. The acquisition device was a Myo EMG 
bracelet with 8 channels and a sampling frequency of 
200 Hz, manufactured by Thalmic Labs, Canada.
 Target category and irrelevant category data 
division: experiments were set up with 1 gesture as the 
target category action and the remaining gestures as 
the irrelevant category actions, traversing all possible 
situations. Specifically, a total of 8 experiments 
were conducted per subject in DB1 and DB5, and 7 
experiments were conducted per subject in the self-
collected dataset.
 Training set and test set data division: the training set 
has only target category data, and the test set has both 
target category and irrelevant category data. Specifically, 
in the DB1 dataset experiments, the 1st, 3rd, 4th, 6th, 8th, 
9th, and 10th gesture repetitions of the target category are 
used to build the training set, and the 2nd, 5th, and 7th 
gesture repetitions of the target category and all gesture 
repetitions of the irrelevant category are used to build the 
test set. In DB5 and self-collected  dataset experiments, 
the 1st, 3rd, 4th, and 6th gesture repetitions of the target 
category are used to construct the training set, and the 2nd 
and 5th repetitions of the target category and all gesture 
repetitions of the irrelevant category are used to construct 
the test set.

2.2. Data pre-processing

First, for all datasets in this paper, only eight channels 
of EMG data were used. The specific reasons are as 
follows: the most important muscle group for EMG 
gesture recognition is concentrated around the forearm 
brachioradialis muscle below the elbow. Commercially 
available eight-channel EMG bracelets are able to cover 
this part of the muscle. Additionally, the configuration 
of such bracelets is portable and has wide practical 
application prospects. Therefore, this data acquisition 

Figure 2. Types of gestures in the dataset used in this paper. (a) 8 gestures in the DB1/DB5 Exercise B dataset; (b) 7 gestures in the self-collected 
dataset.
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scheme has become the first choice for many EMG 
gesture recognition studies.
 Data segmentation: This study utilizes the sliding 
window method to segment the multi-channel EMG 
signals and obtain muscle activity samples of hand 
gestures. Specifically, as shown in Figure 3, we select 
windows of length 128 from the time series data and 
slide them with a fixed step size of 16. This means that 
multiple windows are extracted, with each window 
containing 128 consecutive time values. In this case, 
the data size is 1 × 128. Considering the presence of 8 
channels, the data size of the EMG window samples is 
8x128. This method can effectively segment the EMG 
signals to extract useful time-domain features and 
provide a database for subsequent model training and 
testing.
 Data dimensional transformation: To enhance the 
feature learning in GAN networks, this study conducts 
a data dimensional transformation. Specifically, 
the segmented multichannel EMG samples are 
transformed from a 2D matrix of size 8 × 128 to a 2D 
matrix of size 32 × 32, which better matches the input 

format of the network.

2.3. Feature reconfiguration network EMG-FRNet model

The original GANomaly network architecture, as shown 
in Figure 4(a), consists of two main components: the 
generator G and the discriminator D. The generator 
network G is composed of an encoder GE1, a decoder GD, 
and another encoder GE2, forming an "encoder-decoder-
encoder" structure. Firstly, GE1 learns the latent features 
z of the input data X through downsampling. Then, GD 
upsamples z to generate .  is further downsampled 
by GE2 to learn the feature representation ẑ of . ẑ is 
the reconstructed latent feature of the input data. GE2 
employs the same network structure as GE1. The main 
purpose of the discriminator network D is to distinguish 
between the real input data X and the reconstructed 
input data . During training, the parameters of the 
generator network G and the discriminator network D are 
alternately updated. During testing, the discriminator D 
is discarded. Ultimately, in the testing phase, the network 
obtains the latent features z and reconstructed latent 

Figure 3. Schematic diagram of data segmentation. Windows1 and Windows2 represent myoelectric windows with a length of 128 sampling 
points, and stride represents a step size of 16 sampling points.

Figure 4. Model structure diagram. (a) Structure of the original GANomaly model; (b) Structure of the EMG-FRNet model.
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features ẑ of the input data.
 The original GANomaly network has shown good 
performance in image anomaly detection, but its 
performance still needs to be improved when applied to 
EMG gesture recognition. Therefore, this paper proposes 
a feature reconstruction network, EMG-FRNet, for EMG 
gesture recognition. The model structure of EMG-FRNet 
is shown in Figure 4(b). It is an improvement on the 
original GANomaly network by adding CC, CLEDFF, 
and SE.
 (1) CC: As shown in Figure 4(a), the original 
GANomaly network takes in three-channel RGB images, 
while this paper's input is single-channel EMG samples. 
The network contains a large number of redundant 
feature channels, which increases the number of 
parameters in the network, makes training more difficult, 
and affects the performance of the network.
 In order to reduce the redundant feature channels 
of the original GANomaly network, we propose a CC 
method. This method consists of two parts: proportional 
CC and power-of-two CC. Proportional CC reduces the 
number of feature channels in the network according to 
the channel proportion of input samples. Power-of-two 
CC ensures that the number of channels after cropping 
can still be divisible by 2, to maximize the computer's 
processing capability. The CC method proposed in this 
paper is illustrated in Figure 5. In the proportional CC 
part, the feature maps of the original GANomaly network 
are cropped according to a 3:1 ratio, which is due to the 
channel ratio of three-channel RGB images and single-
channel EMG samples. In the power-of-two CC part, the 
number of channels after cropping is required to be an 

integer power of two. Figure 5 shows the CC process of 
the downsampling feature maps. The number of channels 
in the downsampling feature layer is modified from 
(64, 128, 256) to (16, 32, 64). Similar modifications are 
made to the upsampling feature layer, with the number 
of channels changed from (256, 128, 64) to (64, 32, 
16). Furthermore, the number of channels for the latent 
features z and ẑ output by the network remains at 100, as 
shown in Figure 4. This configuration allows for more 
information to be contained in the latent features z and 
ẑ, which leads to more accurate reconstruction error 
calculation in the irrelevant gesture recognition module 
in Figure 1.
 (2) CLEDFF: During the downsampling encoding 
process GE1 of the original GANomaly network from the 
input data X to the latent feature z, the original data is 
compressed continuously through the use of convolution 
and pooling operations. This compression can result 
in information loss, which limits the available feature 
information during the upsampling decoding process GD 
from the latent feature z to the reconstructed data . As 
a result, the reconstruction performance of the generator 
is restricted and the recovery effect of the original data is 
affected.
 To compensate for the information loss during the 
downsampling process, this paper proposes a CLEDFF 
method. As shown in Figure 6, the feature blocks of 
the encoder GE1 are visualized as blue, and the feature 
blocks of the decoder GD are visualized as green. This 
method adds a series of skip connections between the 
encoder GE1 and decoder GD of the generator G. These 
skip connections can directly transmit the original 

Figure 5. CC methods. Including proportional CC and power-of-two CC. Bold numbers in the figure represent the number of channels in the feature 
maps.

Figure 6. Schematic diagram of CLEDFF. Downsampled feature maps and upsampled feature maps for feature fusion.
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high-resolution feature information to the decoder, 
allowing effective fusion of feature information during 
the encoding and decoding process, thus avoiding 
information loss caused by downsampling. The 
implementation steps of this method are as follows: in 
the decoding and recovery process from latent feature 
z to , first, z is upsampled by 2× to obtain the 4 × 4 
× 64 feature block of decoder GD. Secondly, the 4 × 4 
× 64 feature blocks of encoder GE1 and decoder GD are 
concatenated into a 4 × 4 × 128 feature block, which is 
then upsampled by 2× to obtain the 8 × 8 × 32 feature 
block of decoder GD. Then, the 8 × 8 × 32 feature blocks 
of encoder GE1 and decoder GD are concatenated into an 
8 × 8 × 64 feature block, which is further upsampled by 
2× to obtain the 16 × 16 × 16 feature block of decoder 
GD. Finally, the 16 × 16 × 16 feature blocks of encoder 
GE1 and decoder GD are concatenated into a 16 × 16 × 32 
feature block, which is upsampled by 2× to obtain . 
 (3) SE: Since CLEDFF directly connects the same-
scale encoding and decoding features, this connection 
mechanism enables cross-layer information transmission 
and can compensate for information loss. However, 
same-scale features often contain similar but not 
exactly the same information, so the feature information 
transmitted through CLEDFF may contain redundant 
information. The existence of this redundant feature 
information can reduce the network's generalization 
ability and may lead to overfitting problems.
 To avoid the problem of redundant information in 
CLEDFF, this paper proposes the use of SE mechanism. 
As shown in Figure 7, after obtaining the concatenated 
feature maps M through CLEDFF, this method uses the 
SE mechanism to obtain the feature maps M-weight 
containing weight information. The SE mechanism 
mainly consists of three steps: Squeeze, Excitation, and 
Scale (33).
 Squeeze: Firstly, the feature concatenation map M 
of the encoder and decoder is reduced in dimensionality 
through global average pooling, resulting in a numerical 
representation for each feature channel, and yielding 
a feature representation z. This is shown in Equation 
(1), where z represents the feature representation, M 
represents the feature concatenation map, and H, W, and 
C represent the height, width, and number of channels of 
the feature concatenation map.

                                                                            (1)

Excitation: Next, the feature representation z is non-
linearly transformed and mapped into a weight vector 
s. This process is accomplished through two fully 
connected layers, where different numerical values in s 
represent the weight information of different channels. 
As shown in Equation (2), where s represents the weight 
vector, W1 represents the parameters of the first fully 
connected layer, Relu is the activation function of the 
first fully connected layer, W2 represents the parameters 
of the second fully connected layer, and Sigmoid is the 
activation function of the second fully connected layer.

                                                                            (2)

Scale: Finally, the weight vector s is applied to the 
original feature maps M to obtain the weighted feature 
maps M-weight. Specifically, the feature concatenation 
map is weighted by multiplying it with the weight 
vector s generated in the third step, resulting in a feature 
concatenation map containing weight information. As 
shown in Equation (3), where M-weight represents the 
weighted feature maps.

                                                                            (3)

2.4. Irrelevant gesture discriminator module

The process of this module is shown in Figure 1. Firstly, 
the reconstruction error between the feature vectors z and 
ẑ is calculated using L2 distance, as shown in equation 
(4). Then, the reconstruction error is compared with a 
pre-defined threshold value. If the reconstruction error is 
greater than the threshold, it is classified as an irrelevant 
gesture; otherwise, it is classified as the target gesture. 
The equation for the classification is shown in equation 
(5), where 0 represents the target gesture and 1 represents 
the irrelevant gesture.

                                                                            (4)

Figure 7. SE Diagram. The Squeeze operation obtains the feature representation z for each channel of the feature concatenation map M; the 
Excitation operation obtains the weight s for each channel; the Scale operation obtains the feature concatenation map M-weight containing weight 
information.
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                                                                            (5)

 The principles for threshold selection are as follows: 
Firstly, the reconstruction errors of the feature vectors 
from all samples in the test set are sorted. Secondly, 
these values are iterated in ascending order to serve as 
the current threshold. Subsequently, the samples are 
predicted as either belonging to the target category or 
the irrelevant category based on the threshold. Next, by 
combining the predicted labels with the true labels, the 
false positive rate (FPR) and true positive rate (TPR) 
are calculated for each threshold. Finally, the optimal 
threshold is determined by selecting the value at which 
the difference between the TPR and FPR is minimized, 
ensuring the best trade-off between TPR and FPR.

3. Results

3.1. Experimental environment and parameter settings

The computer configuration used in the experiments of 
this study is as follows: an Intel Core i5-8250U CPU 
processor (with 8GB of memory), an NVIDIA GeForce 
940MX graphics card (with 2GB of memory), and the 
Windows 10 operating system. The network model was 
trained and tested using the Python 3.7 programming 
language in the PyTorch 1.2.0 deep learning framework.
 The training parameter settings of the EMG-FRNet: 
Adam optimizer was used with a smoothing constant 
(β1, β2) of (0.5, 0.999), the initial learning rate lr was set 
to 2e−3, the batch size was set to 64, and the number of 
training epochs was set to 200.

3.2. Evaluation Indicators

In this paper, the area under the Receiver Operating 
Characteristic (ROC) curve (AUC) is used to evaluate 
the performance of the model. AUC values range from 
0 to 1, and the larger the AUC value, the better the 
performance of the model.
 The confusion matrix is the basis for drawing the 
ROC curve. In the confusion matrix, TP represents 
true positive, indicating that the sample's true class is 
positive and the model recognition result is also positive. 
Similarly, FN represents false negative, FP represents 
false positive, and TN represents true negative (34).
 Based on the formulas (6) and (7), the FPR and TPR 
can be obtained. FPR represents the ratio of negative 
samples that are incorrectly classified as positive. TPR 
represents the ratio of positive samples that are correctly 
classified as positive.

                                                                            (6)

                                                                            (7)

 For binary classification tasks, a fixed threshold can 
be set to obtain a (FPR, TPR) pair. By plotting the (FPR, 
TPR) pairs corresponding to different thresholds on a 
coordinate system, the ROC curve can be obtained. The 
ROC curve represents the recognition performance of the 
model under different thresholds.
 Furthermore, this paper uses the AUC to quantitatively 
evaluate the performance of the model in recognizing 
irrelevant gestures.

3.3. Comparison experiment

In this paper, the proposed EMG-FRNet for EMG-
based irrelevant gesture recognition is compared with 
the existing methods based on SVDD (19) and AE (20). 
These comparative algorithms are all state-of-the-art 
methods in the field of irrelevant gesture recognition 
and have demonstrated good performance in this area, 
thus we chose them as the comparison algorithms in this 
study.
 The experimental settings are as described in Section 
2.1, where each subject undergoes multiple experiments, 
with a different target gesture category set for each 
experiment. DB1 and DB5 each have 10 subjects, 
and each subject performs 8 different target gesture 
experiments. The self-collected dataset consisted of 6 
participants, with each participant performing 7 different 
target gesture experiments. Firstly, the AUC values 
are recorded for each subject when setting different 
target gestures. Then, the AUC values corresponding 
to different target gestures are averaged to obtain the 
subject's AUC value. Finally, the AUC values of all 
subjects in the dataset are averaged to obtain the dataset's 
AUC value. Figure 8 shows the AUC line graph for 
different subjects in each dataset. Table 1 shows the AUC 
values for each dataset. 
 From Figure 8, it can be seen that for different 
subjects, compared to the SVDD and AE comparison 
algorithms, the AUC value of the EMG-FRNet model 
can always maintain a high and relatively stable level. 
Specifically, the AUC values on different datasets are 
described in Table 1.
 In the aforementioned comparative experiments, 
SVDD performed the worst. The reason for this may 
be that the traditional one-class support vector machine 
method is used, based on spherical hyperplanes. This 
method leads to poor classification performance in the 
case of complex data distributions such as EMG samples. 
The AE achieves improvement based on the SVDD.  
This may be because AE uses an autoencoder method for 
feature learning and extraction, which can better explore 
the intrinsic features of data. The EMG-FRNet achieves 
improvement based on the AE. The reason for this may 
be that the method utilizes the advantages of Generative 
Adversarial Networks (GANs) in anomaly detection. It 
also combines strategies such as CC, CLEDFF, and SE 
to further improve the model's performance in EMG 
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irrelevant gesture recognition tasks.
 In conclusion, the proposed EMG-FRNet achieves 
state-of-the-art (SOTA) performance in the task of EMG 
irrelevant gesture recognition.

3.4. Ablation experiments

To validate the effectiveness of the proposed method, the 
following ablation experiments were conducted: based 
on the original GANomaly network, CC, CLEDFF, 
and SE were successively added. In the legend below, 
GANomaly is represented as Baseline, GANoamly+CC 
is represented as Model 1, GANomaly+CC+CLEDFF 
is represented as Model 2, and GANomaly+CC+ 
CLEDFF+SE (EMG-FRNet) is represented as Model 3.
 The experimental setup is described in Section 2.1. 
Figure 9 demonstrates the AUC fold plots for different 
subjects for each dataset. Table 2 demonstrates the AUC 
values for each dataset. 
 From Figure 9, it can be seen that the performance of 
Baseline, Model 1, Model 2, and Model 3 increases in 
turn. Specifically, the AUC values on different datasets 
are described in Table 2.
 In the ablation experiments, Model 1 achieves 
improvement based on the Baseline. The reason for 
this improvement is that the CC reduces the impact of 
redundant features in the original GANomaly network 
on model performance. Model 2 further improves upon 
Model 1. The reason for this improvement is that the 
CLEDFF can compensate for information loss during 
downsampling. Model 3 has been improved from model 
2. The reason for this improvement is that the SE can 
avoid the problem of redundant information brought 
by feature fusion, making the network focus on more 
important features and improving the reconstruction 

performance of the model.
 In summary, the proposed model EMG-FRNet 
achieves the best performance in the task of recognizing 
irrelevant gestures. CC, CLEDFF, and SE all improve 
the model's performance to varying degrees.

4. Discussion

Currently, the recognition performance of most studies 
on EMG irrelevant gesture recognition is unstable. 
This paper establishes a connection between the EMG 
irrelevant gesture recognition and anomaly detection 
fields, and for the first time applies GANomaly to EMG 
irrelevant gesture recognition. Based on this, a feature 
reconstruction network, EMG-FRNet, is proposed 
for EMG irrelevant gesture recognition. The network 
exhibits a small feature reconstruction error for target 
class samples and a large feature reconstruction error for 
irrelevant class samples, which improves the ability to 
distinguish between target and irrelevant samples. We 
verify the feasibility of the proposed method through 
experiments, and the results show that our method 
can maintain a high level of performance in all EMG 
datasets. 
 In this paper, we have achieved high reliability in 
distinguishing target gestures from multiple irrelevant 
gestures. However, in practical myoelectric interaction 
applications, there are often multiple types of target 
gestures, which not only require us to distinguish 
between target and irrelevant gestures but also to 
distinguish between different categories of target 
gestures. In addition, there are other types of interference 
in practical myoelectric interaction applications, such as 
electrode displacement, muscle fatigue, user differences, 
etc., which can lead to poor interaction effects. Therefore, 
for future research, we will further explore the following 
aspects: (i) Based on the EMG-FRNet method proposed 
in this paper, we aim to achieve the distinction between 
multiple target gestures and multiple irrelevant gestures, 
as well as the distinction between different categories 
of target gestures. (ii) Additionally, we will seek 
corresponding solutions for other types of interference, 
with the goal of improving the interaction effects in 
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Table 1. AUC values for each dataset (Comparison experiment)

Model Name

SVDD (19)
AE (20)
EMG-FRNet

DB5

0.753
0.819
0.926

DB1

0.744
0.882
0.940

Our dataset

0.719
0.907
0.969

Figure 8. AUC line chart for different subjects in each dataset. (a)-(c) represent the AUC line charts of SVDD, AE, and EMG-FRNet on different 
subjects in DB1, DB5, and the self-collected dataset, respectively.
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practical myoelectric applications.
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