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1. Introduction

In recent years, machine learning technologies, and 
particularly deep learning (1), have advanced rapidly. 
The emergence of techniques such as convolutional 
neural networks (2,3) and transformers (4), which are 
designed for image recognition and natural language 
processing, has enabled high-performance predictions 
even for complex problems. While terms like "deep 
learning" and "artificial intelligence (AI)" have gained 
popularity recently, these technologies are part of a 
broader category of machine learning. Machine learning 
is a technique where algorithms, using data, discover 
and learn patterns and features from that data and make 
predictions or classifications based on the learned results. 
A key feature of machine learning is that, instead of 
humans manually defining rules for predictions (e.g., 
if a measurement is above 1, classify as A, otherwise 
classify as B), the algorithm itself identifies patterns 
from the collected data and its corresponding outcomes. 
By finding regularities within large datasets, machine 
learning enables accurate predictions. As machine 
learning technology has progressed, its applications have 

expanded to various fields, including medicine, where 
research utilizing machine learning is actively being 
conducted.
 In the medical field, machine learning holds great 
potential. It has been used to predict postoperative 
outcomes based on patient measurements (5,6) and 
disease risk (7). The realization of predictive models 
using machine learning is expected to significantly 
contribute to the decision-making of medical 
professionals and to the treatment of patients. Despite its 
high potential for medical applications, machine learning 
faces a significant challenge in the form of the "black 
box" problem. The black box problem refers to the issue 
where the prediction results and processes generated 
by machine learning are not easily understandable by 
humans. As machine learning algorithms become more 
complex, their behavior becomes more difficult to 
interpret at a macro level, even though some aspects may 
be understood at a micro level. This complexity leads 
to situations where why a certain prediction was made 
or the thought process that underpinned it is unclear. 
This lack of transparency can be a major barrier to the 
acceptance of machine learning in the medical field, 
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In recent years, machine learning, and particularly deep learning, has shown remarkable potential 
in various fields, including medicine. Advanced techniques like convolutional neural networks and 
transformers have enabled high-performance predictions for complex problems, making machine 
learning a valuable tool in medical decision-making. From predicting postoperative complications 
to assessing disease risk, machine learning has been actively used to analyze patient data and assist 
healthcare professionals. However, the "black box" problem, wherein the internal workings of 
machine learning models are opaque and difficult to interpret, poses a significant challenge in medical 
applications. The lack of transparency may hinder trust and acceptance by clinicians and patients, 
making the development of explainable AI (XAI) techniques essential. XAI aims to provide both 
global and local explanations for machine learning models, offering insights into how predictions 
are made and which factors influence these outcomes. In this article, we explore various applications 
of machine learning in medicine, describe commonly used algorithms, and discuss explainable AI 
as a promising solution to enhance the interpretability of these models. By integrating explainability 
into machine learning, we aim to ensure its ethical and practical application in healthcare, ultimately 
improving patient outcomes and supporting personalized treatment strategies.
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as physicians and patients may be reluctant to trust 
predictions with a rationale that is not clear.
 A technology known as Explainable AI (XAI) (8,9) 
has been gaining attention as a way to address the 
black box problem. XAI involves analyzing machine 
learning models to clarify how predictions are made, 
identify trends in predictions, and provide reasoning 
for those predictions. By presenting the importance of 
various features in a manner that is understandable to 
humans, XAI helps to reveal the factors influencing 
the algorithm's outcomes. As a result, it should make 
machine learning more acceptable in the medical field.
 The current study starts by presenting specific 
examples of medical applications of machine learning. 
Next, the mechanisms behind commonly used machine 
learning algorithms are described. Last, this study 
provides an in-depth explanation of explainable 
machine learning techniques as a solution to the black 
box problem. Through this discussion, we aim to share 
insights into the potential applications of machine 
learning in the healthcare field.

2. Machine learning applications in the medical field

With the rapid advancement of AI and deep learning 
in recent years, research utilizing machine learning for 
disease prediction, diagnosis, and prognosis prediction has 
been widely conducted in the medical field. These models 
are expected to analyze complex patient data and serve 
as tools to predict complications, recovery outcomes, and 
aid in decision-making with regard to treatment strategies. 
Here, we will describe specific examples of medical 
applications of machine learning that are anticipated to 
contribute to medical decision-making.

2.1. Prediction of Postoperative Complications

Machine learning is highly effective in predicting 
the risk of postoperative complications (5). For 
example, models have been proposed to assess the 
risk of severe postoperative complications such as 
pneumonia, acute kidney injury, deep vein thrombosis, 
and pulmonary embolism. By using data from 111,888 
surgeries (including patient characteristics and clinical 
information), five different ML algorithms (logistic 
regression (10), support vector machine (SVM) 
(11), random forest (12), gradient boosting (13), and 
deep neural networks) were used to compare the 
accuracy with which postoperative complications were 
predicted. Results demonstrated that the combination of 
preoperative and intraoperative data provided the highest 
prediction accuracy, highlighting the effectiveness 
of machine learning as a tool for postoperative risk 
management.

2.2. Early prediction of diabetes and cardiovascular 
diseases

Machine learning models are also effectively utilized to 
predict diabetes and cardiovascular diseases (7). These 
models integrate a variety of data, such as family history, 
age, weight, blood pressure, cholesterol levels, and 
lifestyle habits (e.g., smoking and exercise), to predict 
disease risk. Studies have constructed models using 
algorithms suited for linear relationships, such as linear 
regression and SVM, as well as algorithms that account 
for nonlinear relationships, like random forest and 
gradient boosting, to provide highly accurate predictions.

2.3. Prediction of postoperative outcomes

Machine learning has been used to predict postoperative 
outcomes. A study sought to predict four short-term 
adverse events – extended hospitalization, discharge 
to a location other than home, readmission within 30 
days, and major complications – following anterior 
cervical discectomy and fusion surgery (6). The study 
explored model construction using five machine learning 
algorithms: TabPFN (14), TabNET (15), XGBoost (16), 
LightGBM (17), and Random forest. Random forest 
demonstrated the best performance of the five, with 
an AUROC ranging from 0.776 to 0.846. Estimating 
the risk of postoperative adverse events enables early 
personalized interventions for each patient, helping to 
manage a potential deterioration in their condition.
 As demonstrated, various predictive studies using 
clinical data have been conducted. Table 1 summarizes 
additional studies related to the application of machine 
learning in the medical field, including the algorithms 
used and their purposes. Traditional techniques like linear 
regression and logistic regression were limited to linear 
problems. However, with the advancement of machine 
learning and improvements in the learning and predictive 
performance of various algorithms, these models can 
now be applied to more complex problems.

3. Representative machine learning algorithms 
commonly used in recent years

In the field of machine learning, various algorithms 
have been developed and are widely used. Among these, 
foundational and representative methods that can be 
used for classification and prediction include logistic 
regression, decision trees (18), random forest, gradient 
boosting, SVM, and deep learning. Logistic regression 
and decision trees are simple in their configuration 
and easy to interpret, but their predictive accuracy is 
relatively low. In contrast, algorithms such as gradient 
boosting and deep learning exhibit superior predictive 
performance, though they are more difficult to interpret.

3.1. Logistic regression

Logistic regression (10) is a commonly used algorithm 
in the medical field and is one of the fundamental 
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be applied to non-linear problems. However, decision 
trees are prone to overfitting, meaning that they may 
perform too well on the training data, resulting in poor 
performance on unseen data.

3.3. Random forest

Random forest (12) is an algorithm that improves 
prediction accuracy by combining multiple decision trees. 
While individual decision trees are prone to overfitting 
and may exhibit low predictive performance, a random 
forest generates multiple decision trees and aggregates 
their predictions to enhance accuracy. The term "forest" 
refers to the collection of decision trees. This approach of 
combining weak predictors – multiple decision trees – to 
improve overall performance is called ensemble learning. 
A random forest operates in three main steps: bootstrap 
sampling, decision tree construction, and prediction 
aggregation.
 In the first step, bootstrap sampling, the training 
data are divided into several sub-datasets. In the second 
step, decision trees are constructed for each sub-dataset 
using randomly selected subsets of input features. By 
randomly sampling the features, each decision tree learns 
from a different combination of variables, increasing the 
diversity of the trees and helping to prevent overfitting. 
In the third step, the predictions from the various decision 
trees are aggregated, either through majority voting or by 
averaging, to make the final prediction. A random forest 
offers higher accuracy and is less prone to overfitting 
compared to individual decision trees. However, a 
disadvantage of this approach is that the model is more 
difficult to interpret. While a single decision tree can 
be easily understood, interpreting how the different 
variables interact to produce the final prediction is 
challenging when multiple trees are combined.

3.4. Gradient boosting

Gradient boosting (13) is another type of ensemble 
learning that combines multiple weak predictors (usually 
decision trees) to build a strong model. While a random 
forest aggregates the predictions of multiple decision 
trees, gradient boosting takes a different approach by 
sequentially creating decision trees, where each new 
tree is trained to correct the errors made by the previous 
ones. The process starts by creating an initial decision 
tree, which typically results in significant errors between 
the predicted values and the actual data. To address this, 
the errors between the predicted results and the actual 
values are calculated. A new decision tree is then trained 
to predict these errors. Combining the outputs of the 
initial tree and the subsequent tree, which focuses on 
correcting mistakes, improves the overall performance of 
the model.
 This process of error correction is repeated, allowing 
the model to refine itself and reduce prediction errors 

algorithms in machine learning. It is particularly well-
suited for binary classification tasks and operates 
similarly to linear regression. Logistic regression 
performs a weighted linear combination of the input 
explanatory variables and passes the result through a 
sigmoid function to predict probabilities between 0 
and 1. The weights are parameters calculated based 
on the training data, and effectively determining these 
parameters enables predictive tasks to be performed. 
This process is known as learning. Simply put, learning 
involves finding the parameters of a function that 
can accurately represent the relationship between the 
observed explanatory variables and the target variable. 
This learning step is achieved through optimization 
techniques.
 In optimization, a loss function is defined to 
represent the objective that needs to be minimized, and 
the parameters are adjusted to minimize this function. 
In logistic regression, the goal is to maximize the 
log-likelihood, which is transformed into a form that 
minimizes the loss function. Through this optimization, 
logistic regression finds the most plausible parameters 
that fit the characteristics of the training data, allowing 
it to make predictions for binary classification tasks. 
Logistic regression assumes that the problem is linearly 
separable, so it may not perform well when there is a 
nonlinear relationship between the explanatory and target 
variables. The simplicity of logistic regression, along 
with the interpretability provided by the weighting of 
each explanatory variable, has resulted in its widespread 
use in the medical field.

3.2. Decision trees

Like logistic regression, decision trees (18) are intuitive 
and easy-to-interpret machine learning algorithms. 
A decision tree classifies input data by recursively 
splitting it according to specific rules. The structure 
formed by these splits resembles a tree, as shown in 
Figure 1, which is why it is called a decision tree. 
Figure 1 illustrates a tree structure that predicts whether 
the temperature on a given day will exceed 22°C 
based on inputs such as weather and season. In this 
tree structure, the path is determined from the top of 
the tree, based on the values of the input data. If, for 
example, the weather is sunny, the model follows the 
path on the right, while if the weather is cloudy or rainy 
it follows the path on the left. This process is repeated 
until the model predicts whether the temperature 
will exceed 22°C. Constructing a tree structure 
that accurately represents the data is essential, and 
algorithms such as ID3 (18), CART (19), and C4.5 (20) 
have been proposed for this purpose.
 A key strength of decision trees is that the tree 
structure clearly shows the criteria for making predictions 
and which features are used, making the model easy to 
interpret. Unlike logistic regression, decision trees can 
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with each iteration, ultimately resulting in a high level of 
predictive accuracy. Popular algorithms that implement 
gradient boosting include XGBoost (16) and LightGBM 
(17), which have been optimized for both performance 
and computational efficiency. This makes them suitable 
for large-scale datasets. Gradient boosting often produces 
more accurate models compared to decision trees and is 
less prone to overfitting. However, similar to a random 
forest, the combination of multiple decision trees makes 
interpreting how the model arrived at its predictions 
difficult, posing challenges in understanding the rationale 
behind the results.

3.5. SVM

SVM (11) is a powerful machine learning algorithm used 
for classification and regression problems. It works by 
finding an optimal boundary that separates the classes in 
the training data, which is then used to make predictions. 
For example, as illustrated in Figure 2, a dataset with 
two variables, X and Y, is plotted. The data belong to 
two classes (A and B), and each class is grouped within 
a certain region in a two-dimensional space. SVM 
finds the optimal boundary that best separates the two 
classes in this space. When new piece of data is plotted, 
if it falls on the side of the boundary corresponding to 

Figure 2. Hyperplane separation of two classes using a support 
vector machine (SVM). A SVM identifies the optimal hyperplane 
that maximizes the margin between the two classes.

Figure 1. Sample decision tree with splits and nodes. This decision 
tree demonstrates how inputs such as season and weather conditions 
are used to predict whether the temperature will exceed 22°C. The tree 
branches represent the decision-making process, splitting based on the 
input features to arrive at a final prediction.

Table 1. Overview of Studies Applying Machine Learning in the Medical Field

Study

Prediction of Acute Kidney Injury after 
Cardiac Surgery (24)

Prediction of Postoperative Complications 
(Pneumonia, AKI, DVT, etc.) (5)

Prediction of Acute Kidney Injury after 
Aortic Arch Surgery (25)

R i s k  P r e d i c t i o n  o f  D i a b e t e s  a n d 
Cardiovascular Diseases (7)

Prediction of Postoperative Outcomes (6)

Prediction of 30-day Postoperative Mortality 
Risk (26)

Prediction of Postoperative Delirium (POD) 
in Elderly Patients (27)

P red ic t ion  o f  Mor ta l i ty  R i sk  a f t e r 
Hepatocellular Carcinoma Surgery (28)

Prediction of Postoperative Survival in 
Gastric Cancer Patients (29)

Prediction of ICU Admission and 30-day 
Postoperative Mortality Risk (30)

Machine Learning Algorithms Used

Logistic Regression, SVM, Random Forest (RF), 
XGBoost, RF + XGBoost

Gradient Boosting, Deep Neural Network (DNN), RF, 
SVM

Logistic Regression, SVM, RF, Gradient Boosting

Logistic Regression, SVM, RF, Gradient Boosting

TabPFN, TabNET, XGBoost, LightGBM, RF

Convolutional Neural Network (CNN), DNN, RF, 
SVM

Logistic Regression, RF, GBM, XGBoost, Ensemble

Logistic Regression, RF, Gradient Boosting, Decision 
Tree

Cox Regression, Random Survival Forest, DNN

RF, Gradient Boosting, SVM, Adaptive Boosting

Prediction Performance

Area Under the Curve (AUC): 0.843 
(RF + XGBoost)

AUC: 0.905 (Gradient Boosting)

AUC: 0.8 (Gradient Boosting)

AUC: 0.862 (XGBoost)

AUC: 0.776 (RF)

AUC: 0.867 (CNN)

AUC: 0.783 (Logistic Regression)

AUC: 0.803 (RF)

AUC: 0.868 ((DNN)

AUPRC: 0.38 (Gradient Boosting)



www.biosciencetrends.com

BioScience Trends. 2024; 18(6):497-504.BioScience Trends. 2024; 18(6):497-504. 501

class A, it is predicted to be class A, and if it falls on 
the side corresponding to class B, it is predicted to be 
class B. While this example involves two variables 
and two dimensions, SVM can be extended to handle 
higher-dimensional data by increasing the number of 
explanatory variables.
 Initially, SVM was designed for linear problems, but 
the algorithm has been improved to handle nonlinear 
problems as well. Linear problems are relatively easy to 
interpret, but interpretation becomes more challenging 
when dealing with nonlinear problems.

3.6. Deep learning

Deep learning (1) is a model that mimics the behavior 
of neurons in the brain, using artificial neurons as 
mathematical models. An artificial neuron receives 
inputs from explanatory variables, applies a weighted 
linear combination, and passes the result through an 
activation function, with the output serving as the 
neuron's response. If a sigmoid function is used as the 
activation function, this operation is nearly identical to 
logistic regression. In deep learning, as shown in Figure 3, 
multiple artificial neurons with the same input variables 
are constructed and treated as layers in a neural network. 
The output of one neural network layer is then used as 
the input for another, with multiple layers connected 
to form a full neural network. Each artificial neuron 
has weight parameters used in its computations, and 
adjusting these weights enables the neural network to 
achieve superior predictive performance.
 The parameters are determined through training with 
data. Initially, random values are assigned as weights, 
and the output of the neural network is calculated based 
on the input data. The error between the predicted output 
and the actual values is then calculated, and the weights 
are adjusted to reduce the error. This process is repeated 
multiple times, gradually refining the parameters so that 
the network can accurately predict the correct output 
when given new input data. Conceptually, this can be 
viewed as a model composed of multiple connected 
logistic regression models.
 Over the past decade, deep learning has been 
intensively researched, leading to various improvements 
and new network structures that have resulted in higher 
performance compared to other models. In particular, 
convolutional neural networks (3) for image recognition 
have gained prominence, while transformers have 
emerged for language processing and time-series 
analysis, with extensive research being conducted in 
these areas.

4. Explainable machine learning

Thus far, we have described representative machine 
learning algorithms. While each algorithm has its 
strengths and weaknesses, they all demonstrate a high 

level of performance. However, there is a significant 
challenge when applying these algorithms to the medical 
field: interpretability. Algorithms like logistic regression 
and decision trees are simple, making their predictions 
relatively easy to interpret. However, the more advanced 
algorithms developed in recent years, which exhibit 
excellent performance, are more complex and difficult 
to interpret, leading to a "black box" problem. Although 
the individual operations performed by the models can 
be understood at a micro level, interpreting the model 
as a whole is difficult. This challenge is known as the 
black box problem, and it is a significant issue in fields 
like medicine, where rationales for and explanations of 
diagnoses are especially important.
 To address the black box problem, efforts are 
underway to develop technologies that can explain the 
internal structure and decision-making processes of 
models in a way that humans can understand. These 
technologies are collectively referred to as XAI, and 
several approaches are emerging in this area (8,9). XAI 
primarily attempts to explain machine learning models 
from two perspectives: global and local explanations.

4.1. Global explanations

Global explanations aim to describe the overall 
characteristics of the model itself. A machine learning 
model learns from training data to obtain parameters 
and a structure that allows it to perform predictive tasks. 
By analyzing which explanatory variables the model 
emphasizes when making predictions, a technique called 
Feature Importance can be used to calculate and assess 
which variables are most important to the model. Another 
global interpretability approach involves constructing a 
simplified model that is easier to interpret and using that 
model to understand the behavior of the more complex 
model. For example, a simplified interpretable model, 
such as a decision tree or logistic regression, can be used 
to approximate the behavior of a deep learning model. 
The deep learning model, seen externally, functions as 

Figure 3. Conceptual Structure of Neural Networks. Each circle 
represents an artificial neuron that receives inputs from the preceding 
layer, applies a weighted linear combination, and passes the result 
through an activation function. Multiple layers of neurons are shown, 
where the output of one layer becomes the input to the next, forming 
a deep network.
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a predictor that outputs some result when given input 
data. By collecting the outputs from various inputs and 
using these data to train a decision tree, the tree will 
approximate the behavior of the deep learning model. 
The decision tree can then be visualized, helping to 
explain why certain outputs are predicted based on 
specific input variables. This type of global explanation 
can help identify important explanatory variables and can 
be used to improve models. Moreover, if the explanations 
provided by the model align with existing research, this 
can enhance the model's validity and credibility.

4.2. Local explanations

Local explanations, in contrast, provide insights into 
specific predictions made by the model when given 
particular input data. For instance, if a machine learning 
model predicts the presence or absence of a disease 
based on electronic health record data, a physician 
might have difficulty understanding why the model 
predicted that the patient has the disease or why it 
predicted that the patient does not. Local explanations 
provide explanations for these individual cases. There 
are several methods of providing local explanations, 
but two commonly used approaches are described here. 
One method identifies the main factors that contributed 
to the prediction. If, for example, a model predicts that 
a patient has diabetes, XAI might indicate that blood 
sugar levels and hemoglobin in the electronic health 
record were particularly high, indicating which factors 
the model considered important. XAI techniques like 
Shapley Additive Explanations (SHAP) (21) and Local 
Interpretable Model-agnostic Explanations (LIME) (22) 
are used to achieve this. Another approach involves 
finding similar past cases to provide an explanation. If, 
for example, a model predicts that a patient has diabetes, 

XAI might search through the training data to find 
similar cases and present a rationale such as "the selected 
patient was also diagnosed with diabetes under similar 
conditions". Influence Functions (23) are often used to 
provide these explanations. Influence Functions calculate 
how much each training sample contributed to a given 
prediction. Applying this method to the mode enables 
determination of which training data samples were 
most influential in shaping the model. By reviewing the 
most influential samples that relate to diabetes, one can 
understand which past data the model relied on when 
making its prediction. Influence Functions can also be 
used to improve models by identifying abnormal data 
that disproportionately influence the model's predictions. 
Such data might represent outliers.
 Therefore, XAI techniques are being proposed to 
provide both global and local explanations, and they are 
being used to improve the interpretability of machine 
learning models. Table 2 summarizes the XAI methods 
discussed thus far. While XAI is still an evolving field, 
it is steadily providing a foundation for offering rational 
explanations, addressing the black box problem, and 
facilitating the practical use of machine learning in the 
medical field.

5. Conclusion

Thanks to the advent of deep learning in particular, 
machine learning has demonstrated great potential in 
various fields, including medicine. Its ability to analyze 
large, complex datasets and make accurate predictions 
offers significant advantages in predicting diseases, 
diagnosing conditions, and assisting in treatment 
planning. However, the use of machine learning in the 
medical field still faces important challenges particularly 
with regard to the interpretability of these models.

Table 2. Summary of Explainable AI Techniques*

Explanation Type

Global Explanation

Local Explanation

Description

Evaluates which variables the model 
emphasizes for prediction and identifies 
important ones.

Simplifies complex models (e.g., deep 
learning) by approximating them with 
interpretable models like decision trees 
or logistic regression.

Provides a local explanation by showing 
which features contributed and how 
much to a specific prediction.

Calculates how individual training 
samples influenced a specific prediction.

Use Case

Analyzing how certain features impact 
predictions across the model.

Using a simple model to explain the 
behavior of complex models.

• Understanding key factors for predicting 
based on input data.
• Helping a physician understand why 
a specific prediction was made for a 
patient.

Identifying which past cases in training 
data most influenced a given diagnosis.

Method/Technique

Feature Importance

Surrogate Models (decision 
trees, logistic regression)

Shapley Additive Explanations
Local Interpretable Model-
agnostic Explanations

Influence Functions

*The methods are categorized into global explanations, which provide insights into the overall behavior of a model, and local explanations, which 
offer case-specific rationales for individual predictions.
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 Traditional models like logistic regression and 
decision trees are relatively simple, making their 
predictions easier to explain. In contrast, more advanced 
models such as gradient boosting, random forest, 
and deep learning—despite their superior predictive 
accuracy—tend to behave like "black boxes." This lack 
of transparency is a major obstacle in the medical field, 
where clinicians and patients need to understand the 
rationale behind predictions for them to be accepted 
and trusted. The development of XAI techniques is 
crucial to addressing this issue. XAI aims to bridge the 
gap between the high performance of modern machine 
learning models and the need for understandable, 
interpretable predictions. The development of XAI tools 
such as SHAP, LIME, and Influence Functions allows 
for the use of machine learning in medicine with greater 
confidence. These tools not only offer transparency but 
also reinforce the reliability and validity of the models, 
helping to align predictions with established medical 
knowledge.
 As machine learning continues to evolve, integrating 
these explainability techniques will be essential to 
ensuring its practical and ethical use in healthcare. The 
future of medicine may increasingly rely on machine 
learning, and with it, explainable models may become an 
indispensable tool to enhance both diagnostic accuracy 
and decision-making processes. Through these advances, 
machine learning can greatly help to improve patient 
care, facilitate personalized treatment strategies, and aid 
healthcare professionals in making informed decisions.
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