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1. Introduction

Intrahepatic cholangiocarcinoma (ICC) is the second 
most common type of primary liver cancer, accounting 
for approximately 10-15% of cases, with hepatocellular 
carcinoma (HCC) being the most prevalent (1). 
Hepatectomy is currently the primary treatment for ICC. 
However, only a tiny portion of patients with ICC are 
able to undergo surgery due to the limited availability 
of effective diagnostic tools (2). Even if surgery is 
undergone, a significant proportion of patients (nearly 
20-50%) will suffer from relapse in the 12-24 months 
following surgery (3,4). Certain serological indicators 
(elevated CA19-9 or positivity for the hepatitis B virus) 
and pathological features (microvascular invasion (MVI), 
multifocal tumor, positive margins, etc.) are considered 
to be linked to the prognosis and recurrence of ICC 
(5). Of these factors, positive lymph nodes (LNs) are 
widely acknowledged as a substantial risk factor for both 
survival and recurrence. A negative correlation between 
the quantity of positive LNs and the overall survival rate 
has been noted (6). Hence, having information about the 
LN status of individuals diagnosed with ICC can yield 

vital insights into staging and adjuvant strategies.
	 There is currently a lack of consensus regarding the 
necessity of performing LN dissection (LND) in patients 
with ICC. A prominent point of contention about LND 
is whether it confers a survival advantage. A meta-
analysis of 1,377 cases indicated that undergoing routine 
LND does not provide an advantage in terms of overall 
survival but is associated with an elevated risk of post-
operative mortality (7). LN metastases may indicate 
a widespread metastatic disease rather than local 
dissemination, therefore diminishing the significance of 
LND. However, the advocates argue that the unfavorable 
views of LND are influenced by a bias in that LND is 
only performed when LN metastasis is suspected, and 
these patients clearly tend to have a poor prognosis. 
From a broader perspective, even if LND offers no 
benefit in terms of prognosis, it can provide precise 
details regarding the staging of LNs (8) and patients 
pathologically confirmed to have positive LNs should 
receive adjuvant treatment as soon as possible and be 
alert to any signs of tumor recurrence. Currently, LND 
is performed in less than 50% of cases (9), and the rate 
of sufficient LND (≥ 6) has plummeted to less than 20% 
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Lymph node metastasis in intrahepatic cholangiocarcinoma significantly impacts overall survival, 
emphasizing the need for a predictive model. This study involved patients who underwent curative 
liver resection between different time periods. Three machine learning models were constructed with a 
training cohort (2010-2016) and validated with a separate cohort (2019-2023). A total of 170 patients 
were included in the training set and 101 in the validation cohort. The lymph node status of patients not 
undergoing lymph node dissection was predicted, followed by survival analysis. Among the models, 
the support vector machine (SVM) had the best discrimination, with an area under the curve (AUC) 
of 0.705 for the training set and 0.754 for the validation set, compared to the random forest (AUC: 
0.780/0.693) and the logistic regression (AUC: 0.703/0.736). Kaplan-Meier analysis indicated that 
patients in the positive lymph node group or predicted positive group had significantly worse overall 
survival (OS: p < 0.001 for both) and disease-free survival (DFS: p < 0.001 for both) compared to 
negative groups. An online user-friendly calculator based on the SVM model has been developed for 
practical application.
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(10). Consequently, LN status cannot be determined 
in a large proportion of patients, hindering systematic 
treatment strategies following surgery. Therefore, several 
models to predict LN metastasis based on logistic 
regression, with results visually depicted in nomograms, 
have emerged (11-13). Nevertheless, the low incidence 
of ICC leads to a relatively limited number of cohorts, 
thereby restricting the number of included variables. 
Moreover, models developed with a small sample size 
are vulnerable to the influence of outliers, inevitably 
diminishing the accuracy and reliability of the model. 
Subsequently, machine learning algorithms have been 
implemented in medical research to address these issues. 
Random forest (RF), a supervised learning algorithm, 
creates a sizable number of decision trees and outputs 
predicted probability or classification by integrating 
the results from all generated trees (14). A variable is 
assessed and selected at each split in the decision tree, 
thereby maximize the disparity between the daughter 
nodes and recursively proceeding until the decision tree 
reaches maximum extension, thus effectively avoiding 
the problem of multicollinearity. A support vector 
machine (SVM) uses support vectors to identify decision 
surfaces (hyperplane) that maximize the classification 
margin between different categories (5). This algorithm 
has reduced susceptibility to outliers, hence enhancing 
the precision of the model.
	 In brief, the aim of the current study was to construct 
a model of the LN metastasis utilizing machine learning 
techniques, including clinical data and pathology 
information from patients in order to provide a reference 
for patients who have not undergone LND or who have 
undergone inadequate LND.

2. Patients and Methods

2.1. Patients

Data were collected on patients who underwent curative-
intent hepatectomy and who were diagnosed with 
ICC pathologically. The data were collected from the 
hepato-biliary and pancreatic department of West China 
Hospital, SCU, between the periods of January 2010 
to December 2016 and January 2019 to October 2023. 
Patients lacking complete pathology information, those 
who did not undergo curative resection, those with 
concurrent extrahepatic disease, or those with missing 
follow-up data were excluded from this study. The Ethics 
Committee of West China Hospital approved this study 
[Approval No. 2024(343)], which was conducted in 
accordance with the principles outlined in the Declaration 
of Helsinki. Due to the retrospective nature of this 
study, informed consent from the Institutional Review 
Board was waived. This study has been registered on 
ClinicalTrials.gov (NCT06290739).

2.2. Included variables and relevant definitions

Demographic, clinicopathological, and serological 
indicators included sex (male/female); age (continuous); 
presence of ascites (yes/no); presence of cirrhosis (yes/
no); hepatitis B virus, HBV (positive/negative); platelet 
count, PLT (continuous); total bilirubin, TB (continuous); 
aspartate aminotransferase, AST (continuous); alanine 
aminotransferase, ALT (continuous); albumin, ALB 
(continuous), prothrombin time, PT (continuous); 
alkaline phosphatase, ALP (continuous); γ-glutamyl 
transferase, GGT (continuous); α-fetoprotein, AFP 
(continuous), carcinoembryonic antigen, CEA (negative: 
< 5 ng/mL, positive: ≥ 5 ng/mL); carbohydrate 
antigen-199, CA19-9 (< 200 U/mL, ≥ 200 U/mL); tumor 
number (solitary/multiple); tumor size (continuous); 
MVI (presence/absent); primary tumor site (right/
left); tumor differentiation (poor, moderate to well-
differentiated), and LN metastasis (yes/no). The 
presence of ascites or cirrhosis was comprehensively 
ascertained with preoperative imaging, intraoperative 
observations, and pathology. MVI and the degree of 
differentiation were confirmed by pathology reports. 
Hilar cholangiocarcinoma, a tumor originating from the 
caudate lobe, and bilateral lesions were excluded.

2.3. Follow-up

Patients who underwent a hepatectomy from 2010 to 
2016 were followed at three-month intervals during the 
initial two years and then every six months thereafter 
until the last follow-up (January 2019). Overall survival 
(OS) refers to the duration between the commencement 
of surgery and the patient's demise due to any reason. 
Disease-free survival (DFS) refers to the period of time 
from the date of surgery until the occurrence of a relapse 
either within or outside the liver.

2.4. Statistical analyses and model development

Continuous data were expressed as the mean and range, 
and intergroup comparisons were made using either the 
Student's t-test or Mann-Whitney U test, depending on 
the circumstances. Binary variables were expressed as the 
frequency (proportion), and differences were tested with 
the χ2 test or Fisher's exact test. This study complies with 
the Transparent Reporting of a multivariable prediction 
model for individual Prognosis or Diagnosis (TRIPOD) 
guideline (15). The cohort from 2010 to 2016 served 
as the training set to construct three models: logistic 
regression (LR), a support vector machine (SVM), and a 
random forest (RF). Patients who underwent LND from 
2019 to 2023 served as the validation set. Least absolute 
shrinkage and selection operator (LASSO) regression 
was performed to determine variables that contributed 
significantly to the model. Subsequently, stepwise 
regression was performed to simplify the model. Without 
compromising the goodness of fit of the model, some 
adjustments to certain variables were empirically made 
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incidence of MVI, the platelet count, and ALT and GGT 
levels in the validation group were markedly higher than 
those in the training cohort. In turn, positivity for CEA, 
multiple lesions, poor differentiation, prothrombin time 
(PT), and tumor size were significantly greater in the 
training set.

3.2. Variable screening

The raw dataset consisted of 21 features including 
demographics (sex, age, ascites, HBV infection, and 
liver cirrhosis); serological indicators (PLT, PT, TB, 
ALT, AST, ALB, ALP, GGT, AFP, CEA, and CA19-
9), and pathology (tumor size, tumor number, MVI, 
primary site of the tumor, and tumor differentiation) 
that needed to be simplified. To streamline the model, 
control multicollinearity, and remove variables that 
had minimal impact on the model, LASSO regression 
was initially performed (Figure 3a). Five-fold cross 
validation was performed, and the number of variables 
associated with the minimum value of binomial deviance 
was incorporated, including a total of 9 parameters: age, 
platelet count, total bilirubin, AFP, CEA, CA19-9, tumor 
number, primary tumor site, and tumor differentiation. 
(Figure 3b). A study has indicated an association between 
sex and LN metastasis (16), but there is no conclusive 
evidence that the remaining excluded variables are 
correlated with LN metastasis. The importance of 
CEA and CA19-9 has been emphasized in numerous 
studies (9,17,12), but other serological indicators have 
little value in predicting LN status. AFP is a valuable 
tumor marker for diagnosing HCC and predicting its 
prognosis, but it has limited utility with regard to ICC. 
The aggressiveness of a tumor can be associated with 
tumor size, tumor number, or tumor differentiation. 
Hence, some pathological features are crucial to 
predicting the incidence of LN metastasis. MVI is a 
prognostic marker of HCC recurrence and survival and 

based on a previous review of the literature. Moreover, 
optimal hyperparameters for the SVM and RF were 
determined via a 5-fold cross-validation. Ultimately, 
the hyperparameters for the machine-learning models 
were as follows: SVM (Kernel = linear, Cost = 0.1) 
and RF (mtry = 2; ntree = 132). A receiver operating 
characteristics (ROC) curve was plotted for each 
model, and a model with an outperforming area under 
the curve (AUC) was selected and applied to patients 
who did not undergo LND. Finally, survival analysis 
between predicted N1 (LN metastasis) and N0 (without 
LN metastasis) was graphed via a Kaplan-Meier curve 
and calculated using a log-rank test. A flowchart is 
shown in Figure 1. The data were analyzed, models 
were constructed, and outcomes were plotted using the 
software R (version 4.2.2), (packages: "glmnet," "car," 
"MASS," "pROC," "survival," "survminer," "e1071," 
"randomForest," and "shiny").

3. Results

3.1. Patient demographics

A cohort of 271 patients with ICC who underwent LND 
at various time periods was included this study (Table 1). 
Of patients with ICC who undergo hepatectomy at this 
hospital, around 30-40% undergo LND. Figure 2a shows 
that the rate of LN biopsy was 44.5% (170/382) in the 
early cohort (2010-2016) and slightly lower at 34.7% 
(101/291) in the late cohort (2019-2023). However, 
the rate of adequate LN examination was higher in 
the later at 36.6% (versus 28.2% in the former), but 
not significantly so (p = 0.192) (Figure 2b). Overall, 
the incidence of LN metastasis among individuals 
who had received LND was 53.5%, with a somewhat 
greater proportion in the early cohort (56.5%) compared 
to the late cohort (48.5%), but not significantly (p = 
0.253) (Figure 2c). The incidence of liver cirrhosis, the 

Figure 1. Flowchart for patient screening.
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Figure 2. (a): Proportion of lymph node dissection. (b): Proportion of adequate lymph node dissection. (c): Proportion of positive lymph 
nodes.

Table 1. Baseline patient characteristics

Cohort

Sex (female/male)
Age* (years)
Ascites (no/yes)
HBV (no/yes)
Cirrhosis (no/yes)
PLT (*109/L)
PT (S)
TB (μmol/L)
ALT (IU/L)
AST (IU/L)
ALB (g/L)
ALP (IU/L)
GGT (IU/L)
AFP (ng/ml)
CEA (<5/≥5 ng/mL)
CA19-9 (<200/≥200 U/mL)
Tumor number (solitary/multiple)
Tumor size (cm)
MVI (no/yes)
Primary site of the tumor (right/left)
Tumor differentiation (poor/moderate to well-differentiated)
Lymph node status (negative/positive)
TNLE# (<6/≥6)

*Continuous variables were expressed as the mean (range); #TNLE: total number of lymph nodes examined; &significant difference.

Training set (2010-2016)
N = 170

  87/83
57.20 (20-81)

142/28
130/40
158/12

183.35 (70-355)
 11.62 (9.3-15)

   23.07 (3.8-544)
46.30 (4-620)

  45.27 (14-831)
   42.13 (23.7-50)
  169.15 (45-1482)
  159.54 (11-1971)

     48.60 (0.7-4035)
111/59
  89/81
  74/96

6.64 (1-17)
146/24

    67/103
132/38
  74/96
122/48

Validation set (2019-2023)
N = 101

44/57
  59.68 (36-84)

80/21
85/16
74/27

  201.67 (54-450)
11.13 (9-25)

  25.34 (4-358)
  70.53 (9-912)

    58.41 (15-748)
  42.18 (25-51)

  173.71 (49-979)
    248.54 (10-3928)
    22.88 (1-1210)

81/20
64/37
86/15

  5.64 (2-14)
63/38
35/66
50/51
52/49
64/37

P-value

 0.277
 0.056
 0.465
 0.175

< 0.001&

   0.034&

   0.004&

 0.733
   0.036&

 0.185
 0.937
 0.820

   0.038&

 0.482
   0.013&

 0.101
< 0.001&

   0.002&

< 0.001&

 0.514
< 0.001&

 0.253
 0.192
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has attracted considerable attention in previous studies 
(18). Nevertheless, recent studies have provided limited 
findings regarding the correlation between MVI and LN 
metastasis. Stepwise regression of these variables was 
subsequently performed. Table 2 shows that a lower 
Akaike information criterion (AIC) corresponds to a 
superior model fit. Statistically speaking, the best model 
should include five predictors: TB, CEA, CA19-9, tumor 
number, and tumor differentiation. The primary site of the 
tumor (PST) itself has little influence on model fit, but 
prior studies have indicated that there is a potential link 
between this variable and LN metastasis (11,17), so the 
decision was to include it. Moreover, an extremely high 
level of TB was considered a relative contraindication for 
hepatectomy and there was no evidence to suggest that 
TB was associated with LN metastasis. As a result, it was 
excluded from the final model. Ultimately, the features 
utilized in modeling were: CEA, CA19-9, tumor number, 
tumor differentiation, and PST.

3.3. Outcomes of logistic regression

Initially, multivariate logistic regression was performed, 
and the results are shown in Table 3. When CA19-
9 was no lower than 200 U/mL, the likelihood of LN 
metastasis increased significantly (HR:2.36; 95% CI: 
1.17-4.84; p = 0.017), and this is also the case when 
the tumor is poorly differentiated (HR:2.56; 95% CI: 
1.18-5.88; p = 0.020). Moreover, patients positive for 
CEA (HR: 2.02; 95% CI: 0.97-4.33; p = 0.064) or with 
multiple tumors (HR:1.87; 95% CI: 0.93-3.64; p = 
0.062) tended to have LN metastasis, but the difference 
was not significant.

3.4. Development and validation of three models

Out of three machine-learning models, RF had the best 
discrimination with the training set (AUC: 0.780; 95% 
CI: 0.710–0.849), followed by the LR (AUC: 0.703; 
95% CI: 0.629–0.786) and SVM (AUC: 0.705; 95% CI: 
0.626–0.784) (Supplemental Figure S1a, S1c, https://
www.biosciencetrends.com/action/getSupplementalData.
php?ID=226, and 4a). Figure 5 shows the importance 
of each variable according to the RF algorithm. The 
top three factors were CA19-9, CEA, and tumor 
differentiation. In other words, removing them would 
greatly affect the accuracy and heterogeneity of this 
model. In the validation cohort, the SVM (AUC: 0.754; 
95% CI: 0.661-0.847) slightly outperformed LR (AUC: 

Figure 3. (a): Plots of the LASSO regression coefficients for various penalty parameters. (b): Cross validation plot of penalty terms.

Table 2. Stepwise regression outcomes

age
-age
-age
-age
-age

PLT

-PLT
-PLT
-PLT

*AIC: Akaike information criterion; #PST: primary site of the tumor.

AIC*

221.03
220.13
219.19
218.91
218.57

TB AFP

-AFP
-AFP

CEA CA19-9 Tumor number PST#

-PST

Tumor differentiation

Variables

Table 3. Outcomes of logistic regression

Predictors

CEA
     positive
     negative
CA19-9
     ≥200 U/mL
     <200 U/mL
Tumor number
     multiple
     solitary
Tumor differentiation
     poor
     moderate/well-differentiated
PST#

     left
     right

95% CI

0.97-4.33
Ref.

1.17-4.84
Ref.

0.97-3.64
Ref.

1.18-5.88
Ref.

0.34-1.33
Ref.

Hazard ratio

2.02
Ref.

2.36
Ref.

1.87
Ref.

2.56
Ref.

0.68
Ref.

#PST: primary site of the tumor. &significant difference.

P-value

0.064
Ref.

  0.017&

Ref.

0.062
Ref.

  0.020&

Ref.

0.262
Ref.

https://www.biosciencetrends.com/action/getSupplementalData.php?ID=226
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0.736; 95% CI: 0.640-0.833), while the RF (AUC: 
0.693; 95% CI: 0.588-0.798) clearly lagged behind the 
other models (Supplemental Figure S1b, S1d, https://
www.biosciencetrends.com/action/getSupplementalData.
php?ID=226, and 4b). Moreover, a comprehensive 
assessment of the three models was performed. With the 
validation set, the RF model had an accuracy of 0.67 
(95% CI: 0.57-0.76), with a precision (positive predictive 
value) of 0.86, a recall (sensitivity) of 0.39, a F1 score of 
0.54, a specificity of 0.94, and a negative predictive value 
of 0.62. The LR model had an accuracy of 0.63 (95% 
CI: 0.53-0.73), a precision (positive predictive value) 
of 0.73, a recall (sensitivity) of 0.39, a F1 score of 0.51, 
a specificity of 0.86, and a negative predictive value of 
0.60. The SVM model had an accuracy of 0.70 (95% 
CI: 0.59-0.78), a precision (positive predictive value) of 
0.76, a recall (sensitivity) of 0.53, a F1 score of 0.62, a 
specificity of 0.84, and a negative predictive value of 0.66 
(Table 4). The AUC for the RF model plummeted with 
the validation set, potentially indicating overfitting of the 
training set. In turn, the performance of the LR and SVM 
with the validation set was similar to that with the training 
set. Moreover, the SVM had the lowest misclassification 
rate with the validation set, followed by the RF and LR. 
Additionally, the SVM model had the highest F1 score 
(a combined measure of precision and recall), in contrast 

to that of the RF or LR model. After comprehensive 
consideration, the SVM model was chosen for the final 
model. To enhance the accessibility of the model, a user-
friendly calculator was developed and made accessible 
on a website (mieureka.shinyapps.io/Supporting_Vector_
Machine_for_ICC_lymph_node_metastasis). This 
calculator helps clinicians to predict the likelihood of LN 
metastases in individuals who did not undergo LND or 
who underwent an insufficient LN examination.

3.5. Survival analysis

Survival analysis was performed among patients 

Figure 4. (a): ROC curve from the training set for the SVM. (b): ROC curve from the validation set for the SVM.

Figure 5. Feature importance in an RF model.

Table 4. Metrics of three models

Metrics

Accuracy
Specificity
Sensitivity
PPV#

NPV&

F1-score

Support Vector 
Machine

0.70
0.84
0.53
0.76
0.66
0.62

#PPV: positive predictive value. &NPV: negative predictive value.

Logistic 
Regression

0.63
0.86
0.39
0.73
0.60
0.51

Random
Forest

0.67
0.94
0.39
0.86
0.62
0.54

Model

https://www.biosciencetrends.com/action/getSupplementalData.php?ID=226


www.biosciencetrends.com

BioScience Trends. 2024; 18(6):535-544.BioScience Trends. 2024; 18(6):535-544. 541

undergoing LND with a different LN status and patients 
not undergoing LND with a different predicted LN 
status. The median follow-up was 17.9 months for OS 
and 6.5 months for DFS for individuals who underwent 
LND. The median OS was 12.2 months for the N1 group 
and 40.7 months for the N0 group, while the median 
DFS was 4.3 months for the N1 group and 9.5 months 
for the N0 group. A log-rank test indicated a significant 
difference (p < 0.001 for both), as shown in Figure 
6a, 6b. Each patient who did not undergo LND was 
subsequently classified by the SVM into a predicted N1 
group or a predicted N0 group. With a median follow-
up of 25.9 months, the median OS for the pN1 group 
was 19.7 months. The median OS for the pN0 group 
was not determined at the conclusion of the follow-up 
(Figure 6c). The median DFS for the pN1 group was 5.7 
months, with a median follow-up of 11.5 months. The 
median DFS for the pN0 group was not determined at 
the conclusion of the follow-up (Figure 6d).

4. Discussion

Presented here is the rate of LND and adequate 
LN examination (≥ 6) performed at our facility. 
Additionally, a bar plot was used to depict the rate 
at which LNs tested positive. LASSO and stepwise 
regression were performed to screen variables, eliminate 
multicollinearity, and streamline the final model. Three 
machine-learning models (LR, SVM, and RF) were 
subsequently established and validated with two cohorts 

from different time periods (2010-2016 and 2019-
2023). The SVM algorithm had superior performance 
with both the training and validation sets, so it was 
therefore selected to assess the LN status in patients not 
undergoing LND. The Kaplan-Meier curve indicated a 
significant correlation between positive LNs and a poorer 
OS and DFS, and this trend remained in the prediction 
cohort, further corroborating the reliability of the current 
results.
	 LN metastasis has been confirmed to be a prognostic 
indicator of ICC in two large-sample studies (6,19). In 
specific terms, Zhang et al. found that there was a direct 
correlation between the number of LN metastases and 
the OS rate, i.e., OS decreased as the number of LN 
metastases increased (6). Studies have also modified 
the 8th edition of the AJCC (American Joint Committee 
on Cancer) staging system and redefined the N stage 
(20,21). Moreover, several studies have contended that 
ICC with positive LNs tends to benefit from adjuvant 
therapy (22,23). A study has even reported that ICC with 
positive LNs can be treated with chemotherapy alone 
instead of surgery, without compromising prognosis (24). 
Given these findings, lymphadenectomy needs to be 
performed in order to acquire pathological verification 
of the status of LNs. Nevertheless, a substantial 
body of research opposes the routine performance of 
lymphadenectomy because it fails to confer a prognostic 
benefit, prolongs operating time, and increases the risks 
of postoperative complications (7) (25-27). Both the 8th 
AJCC guideline and Chinese consensus suggest routine 

Figure 6. (a): OS curve for different N stages. (b): DFS curve for different N stages. (c): OS curve for different predicted N stages. (d): 
DFS curve for different predicted N stages.
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lymphadenectomy in patients with ICC, and the number 
of nodes dissected should be no less than 6. However, 
the rate of LND at our facility used to be less than 50% 
and has declined in recent years (Figure 2a). Conversely, 
the rate of sufficient LND has risen to nearly 40% (Figure 
2b). At our facility, a mere 12.5% of patients underwent 
sufficient LN sampling for accurate nodal staging, which 
is well below the international benchmark (28). Hence, 
a system needs to be promptly developed to serve as 
a reference for patients with a lack of nodal staging or 
inadequate nodal staging.
	 Our model can aid in clinical decision-making both 
intraoperatively and postoperatively. Patients identified 
as having a high risk of LN metastasis should undergo 
LND during surgery, and the number dissected nodes 
and extent of LND should be ensured. For patients 
who underwent surgery without LND, our web-based 
calculator can assess the risk of LN metastasis, offering 
a reference for adjuvant therapy. Since a previous study 
has claimed that there is no statistical difference in LN 
metastasis between small ICC and large ICC when using 
a tumor size of 3 cm as the threshold (29), we believe 
that this model is applicable to surgical patients without 
distant metastasis. However, a point worth noting is 
that this model may not apply to patients with locally 
advanced unresectable tumors or distant metastases, 
as they often do not undergo LN biopsy and the risk or 
pattern of LN metastasis in this population has yet to be 
fully determined.
	 A point that warrants mention is that the sample 
sizes for the training and validation cohorts were 
constrained due to the low prevalence of ICC. 
The l imited sample size may compromise the 
generalizability of our model, thereby hindering its 
application to real-world scenarios. Smaller samples 
might lead to potential overfitting, resulting in the 
model exhibiting significantly superior performance 
with the training set compared to the validation set. 
This situation also arose in the current study, where the 
RF model demonstrated the potential for overfitting. 
Moreover, having a small sample increases the 
likelihood of outliers, which increases the variance 
of logistic regression predictors and diminishes the 
accuracy of model predictions. We have adopted a 
series of strategies to address these issues. First, to 
ensure predictive capability, we used regularization 
techniques (LASSO) and stepwise regression to restrict 
the number of features incorporated in the model as 
much as possible. Second, we opted for the SVM over 
the RF as the final model, as a simple model is less 
prone to the danger of overfitting. Finally, there can 
be intrinsic deficiencies in developing and validating a 
model with the same cohort, as a group of patients may 
possess some unpredictable characteristics that hinder 
generalizability to a new dataset. Hence, we selected 
two cohorts from different timeframes for modeling and 
validation to enhance the scientific rigor of this study.

	 To date, a series of studies have constructed models 
to predict LN metastasis but with a limited sample size. 
Owing to the relative low incidence of ICC, most training 
sets consist of approximately 100 cases(13,30,31). 
This may increase the influence of outliers in logistic 
regression, perhaps resulting in an increase in the mean 
square error (MSE). Moreover, a rule of thumb for 
logistic or Cox regression is that 10 or 20 events per 
predictor (EPV) are generally considered robust and 
reliable (32), suggesting that the aforementioned studies 
should have 3 to 5 variables or even fewer. Machine 
learning is suited to solving small-sample models because 
it screens variables and is less impacted by outliers. In 
2022, an RF algorithm was introduced to predict LN 
metastasis, and the machine-learning model markedly 
outperformed logistic regression (12). Surprisingly, an 
RF model was not constructed or validated in a cohort 
of patients not undergoing LND. Thus, we validated our 
model with a group of 212 patients not undergoing LND, 
and we incorporated the model in an online calculator to 
enhance its credibility and user-friendliness.
	 To the extent know, the current work describes the 
first online calculator based on machine learning to 
evaluate LN metastasis. The training set, validation, 
set and non-LND dataset have relatively substantial 
sample sizes. Nevertheless, there are several limitations 
worth mentioning. First, at least six LNs needed to be 
examined in the patients in this study in order to reduce 
the risk of underestimation. However, this is impossible 
to achieve in the real world since the rate of adequate 
LND is relatively low, which may be because dissection 
offers no prognostic benefit but potentially prolongs 
operating time and can results in complications (33). 
This should be considered in the design of prospective 
trials. Additionally, there are some discrepancies in 
the demographics of training and test data that might 
potentially compromise the sensitivity or specificity of 
the model when applied to the validation set. Finally, 
whether pN1 patients are more likely to benefit from 
adjuvant therapy compared to the pN0 group is still 
unclear, and this should be the focus of a subsequent 
study.

5. Conclusion

To summarize, a model to predict LN metastasis based 
on a SVM was developed and verified in different time 
cohorts for patients with ICC. The predicted outcome 
indicated a survival difference in patients not undergoing 
LND, suggesting that it is applicable to patients not 
undergoing LND or patients with inadequate LND. 
A RF model indicated that CEA, CA19-9, and tumor 
differentiation represented the top three crucial features, 
warranting particular attention. In order to enhance the 
accuracy and reliability of the model, multicenter studies 
should be conducted with large cohorts and sufficient LN 
sampling.
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