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1. Introduction

The growing prevalence of cognitive impairment is 
predominantly attributed to an aging population, further 
compounded by rising psychological stress.  This 
escalating challenge profoundly undermines individual 
quality of life and imposes substantial economic strains 
on families and society. Dementia, a leading cause of 
cognitive impairment, represents a critical global health 
challenge, with the number of affected individuals 
projected to reach 139 million by 2050 (1). Another 
major category of mental disorders associated with 
cognitive impairment is currently among the most 
economically burdensome diseases worldwide (2).
 Cognition encompasses a wide range of intricate and 
advanced brain functions, such as perception, attention, 
memory, and thinking. It represents the human brain's 
capacity to extract, process, and retain information 
through thought, experience, and emotion. Any factor that 
disrupts the normal structure and function of the brain 
can lead to cognitive impairment. Common causes of 
cognitive impairment include chronic neurodegenerative 
diseases, stroke, traumatic brain injury (TBI), and mental 

disorders (3,4).
 Neurodegenerative diseases affecting memory mainly 
include Alzheimer's disease (AD), Parkinson's disease 
(PD) and so on. AD is the leading cause of dementia 
(5). The fifth edition of the Diagnostic and Statistical 
Manual of Mental Disorders of the American Psychiatric 
Association (DSM-5) classifies mild cognitive 
impairment (MCI) and dementia as "neurocognitive 
disorders", which are prevalent degenerative conditions 
affecting the central nervous system, primarily in older 
individuals but also in younger populations, particularly 
those with genetic predispositions. MCI represents 
an intermediate stage between normal cognition and 
dementia, characterized by largely preserved functional 
ability (6,7). Dementia is typically diagnosed when 
cognitive impairment significantly impairs social or 
occupational functioning. Mental disorders such as 
schizophrenia (SCZ), depression, and autism spectrum 
disorder (ASD), often influenced by genetic factors, 
are also among the major contributors to cognitive 
impairment.
 However, the diagnosis of cognitive impairment is 
highly complex. In clinical practice, the diagnosis of 
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various subtypes of cognitive impairment relies primarily 
on clinical manifestations and auxiliary examinations. 
Auxiliary examinations encompass imaging studies, 
laboratory tests, and other assessments. The clinical 
manifestations mainly depend on the judgment of 
the doctor. During cognitive function assessments, 
clinicians initially conduct a subjective evaluation and 
closely monitor changes in patients' daily lives. Patients 
or their family members may report symptoms such as 
memory loss and cognitive decline. If patients neglect or 
withhold relevant information, doctors should actively 
inquire and observe for signs of cognitive decline during 
communication, such as forgetting important items like 
keys, appointments, or medication. Patients may also 
report changes in mood and behavior, including anxiety, 
depression, or apathy. However, it is crucial to note that 
a certain degree of cognitive slowing is a typical feature 
of normal aging (8). Distinguishing whether a patient's 
cognitive decline holds diagnostic significance poses a 
challenge for general clinicians.
 Objective assessment is a crucial component in 
diagnosing cognitive impairment. Two commonly used 
screening scales in clinical practice are the Mini-Mental 
State Examination (MMSE) and the Montreal Cognitive 
Assessment (MoCA). While these evaluation methods 
are simple to administer, they can be influenced by 
subjective factors such as region, language proficiency, 
and education level  of the subjects.  Accurate 
interpretation often requires experienced clinicians. 
To overcome these limitations, additional auxiliary 
examinations are frequently employed in the diagnostic 
process, including functional magnetic resonance 
imaging (fMRI), electroencephalograms (EEG), and 
positron emission tomography (PET). But there are still 
dilemmas in the use of these research tools. EEG has low 
spatial resolution and poses challenges in source tracing 
analysis (9). The equipment for fMRI is expensive 
and bulky (10), requiring participants to be completely 
immobilized in a closed and noisy environment during 
the scanning process which hinders the examination 
of brain function during task performance (11). PET 
is invasive as it requires the use of radioisotopes and 
involves ionizing radiation exposure effects (11,12). 
Therefore, the development of new assessment tools for 
cognitive impairment research is crucial.
 Functional near-infrared spectroscopy (fNIRS), is 
an emerging optical imaging technology that has gained 
attention in recent years. The myriad advantages it offers 
in monitoring brain function have piqued the interest 
of researchers, despite its current nascent stage of 
development (13). fNIRS provides valuable information 
with high temporal and spatial resolution for localizing 
brain function during cognitive task performance. 
This capability enables stereotyping and localization 
diagnosis of brain function, introducing a new dimension 
to brain function detection. Furthermore, fNIRS is 
highly compatible with other techniques, making it a 

valuable complement to existing detection methods. 
The integration of multi-dimensional cognitive function 
evaluation holds the potential to enhance the accuracy 
and sensitivity of cognitive impairment.
 Based on the aforementioned reasons, this review 
provides a comprehensive summary of the principles, 
applications, and historical evolution of fNIRS 
technology. It focuses on the extensive use of fNIRS 
in the domain of cognitive impairment related to 
neurological and psychiatric diseases. The objective 
is to offer a comprehensive overview of the current 
application status and future prospects of fNIRS in the 
field of cognitive impairment.
 A systematic search of the PubMed database was 
conducted using the terms "(functional near-infrared 
spectroscopy OR fNIRS) AND (Cognitive impairment 
OR Cognitive disorder OR Cognitive decline OR 
Cognitive dysfunction)", initially identifying 826 
articles.  To refine the selection, filters were applied for 
article type, publication period, and language, narrowing 
the pool to 126 studies.  The retrieved records were 
then imported into a citation management software for 
further screening and removal of duplicates. Inclusion 
criteria: Eligible studies encompassed Clinical Studies, 
Clinical Trials, Comparative Studies, Evaluation Studies, 
Observational Studies, Randomized Controlled Trials, 
and Validation Studies.  Articles published between 
2005 and 2024 were considered, ensuring coverage of 
nearly two decades of research in the field. Exclusion 
criteria: Studies were excluded if they were written in 
non-English languages or if fNIRS was not employed to 
measure brain activation during cognitive tasks.

2. The rationale for fNIRS

Spectroscopy theory serves as  one of  fNIRS' 
fundamental theoretical foundations. The two major 
chromophores in biological tissues are oxyhemoglobin 
(HbO2) and deoxyhemoglobin (HbR). These proteins 
exhibit different light absorption characteristics for 
near-infrared light, with absorption varying according 
to wavelength (Figure 1A). HbR absorbs more strongly 
below 790 nm, while HbO2 absorbs more strongly 
above 790 nm (14). During fNIRS measurements, near-
infrared light of different wavelengths is emitted by the 
light source and passes through the layers of cranial 
structures to reach the neuronal tissue. Within the 
tissue, light undergoes absorption and scattering. The 
absorption and scattering processes adhere to the Beer-
Lambert law, enabling the noninvasive quantification 
of cortical HbO2 and HbR concentrations through a 
modified Beer-Lambert law (15). These concentration 
changes can be used as surrogate markers of cerebral 
blood flow (CBF), thus providing a new means to study 
brain function (12).
 Another crucial principle underlying fNIRS stems 
from neurovascular coupling (NC) (Figure 1B). It 
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hemoglobin species within the cerebral cortex through 
the detection of light absorption at distinct wavelengths. 
This approach provides insights into CBF alterations, 
facilitating the monitoring of local brain tissue 
metabolism. Consequently, it allows for an understanding 
of neural activity in the brain during cognitive tasks.

3. History of fNIRS development and application in 
the field of cognition

The development and application of fNIRS in the 
field of cognition can be traced back to the late 1970s 
when Jobsis first reported the use of near-infrared light 
to noninvasively monitor changes in cortical tissue 
oxygenation in cats (18). In 1993, Hoshi and colleagues 
used fNIRS to study cognitive function and found that 
HbO2 concentration increased and HbR concentration 
decreased in the prefrontal cortex (PFC) of subjects 
during task performance (19). And they first recorded 
PET and fNIRS data simultaneously in 1994 (20).
The ability of fNIRS to monitor oxygenation levels led to 
its rapid application in various diseases, including mental 
disorders (21), stroke (22), PD (23), multiple sclerosis 
(MS) (24), and so on. In 1996, Kleinschmidt performed 
the first simultaneous fMRI and fNIRS to record human 
brain activation (25). In 1997, Fallgatter published the 
first article in his series of fNIRS studies, demonstrating a 
loss of hemispheric functional asymmetry in Alzheimer's 

involves the intricate connections between neural activity, 
CBF, and blood oxygen levels. These connections involve 
neurons, glial cells, neurotransmitters, and chemical 
molecules within the brain microenvironment. Increased 
neuronal activity leads to an elevation in regional CBF, 
meeting the higher metabolic demands of the brain 
while simultaneously triggering an increase in oxygen 
delivery (16). Furthermore, NC involves a process 
wherein heightened brain activity during affective or 
cognitive tasks corresponds with increased blood flow 
and oxygen consumption (17). Neuronal activity relies 
on oxygen supplied through blood metabolism to sustain 
its functionality. Consequently, local changes in cerebral 
hemodynamics occur during cognitive processes, leading 
to enhanced blood flow towards activated brain regions, 
which is reflected by an increase in HbO2 concentration 
and a decrease in HbR concentration (15).
 Based on the aforementioned theory, fNIRS is a non-
invasive and safe technique that utilizes near-infrared 
light to target specific brain regions on the surface of 
the subject's head. This light, with a wavelength range 
of 700-900 nm, can penetrate the skull and reach the 
cerebral cortex, which is approximately 20-30 mm deep 
in the brain, after undergoing reflection, scattering, and 
absorption by the tissue. The emitted light then exits 
the scalp in a "banana-shaped" path and is captured by 
a nearby detector (Figure 1C) (11). fNIRS enables the 
assessment of relative concentration variations of two 

Figure 1. The basic principles of fNIRS. The basic principles of fNIRS including the absorption coefficient of oxygenated and deoxygenated 
hemoglobin at different wavelengths (A), the mechanism of neurovascular coupling (B), and the propagation path of near-infrared light (C). (A): it 
shows that oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (HbR) can be absorbed simultaneously in the near infrared wavelength 
range of 700-900 nm. (B): when cognitive activity occurs, cerebral blood flow (CBF) flows from arterioles to venules, local CBF increases, HbR 
decreases (shown in purple blood cells), HbO2 increases (shown in red blood cells), and more O2 is produced to supply neuronal activity. Thus, fNIRS 
can indirectly reflect the neuronal activity by measuring the changes of HbO2 and HbR. (C): illustration of the path (shown in red banana shape) 
followed by the near-infrared photons from the light source through the different layers of the head to the detector.
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dementia (26). In 1998, the first commercial single-
channel continuous wave imaging system was used 
in neonates, and an increase in HbO2 was found in the 
visual cortex of awake infants induced by visual stimuli 
(27). Sakatani et al. used fNIRS to measure changes 
in HbO2 and HbR in the frontal lobes of Parkinson's 
patients during electrical stimulation. They found that 
these changes resembled those observed during cognitive 
tasks, indicating the involvement of a complex neuronal 
circuit in the frontal lobe (23). In 2004, Macket et al. 
recorded the first simultaneous magnetoencephalogram 
(MEG) and fNIRS data (28) .  fNIRS has been 
increasingly utilized to investigate a wide range of 
cognitive domains, including executive function, 
attention, memory, language, cognition, and decision-
making. Numerous studies have employed fNIRS to 
elucidate the neural mechanisms underlying infant brain 
development and cognitive maturation (29-31). With its 
high ecological validity, fNIRS enables the observation 
of brain activity during naturalistic settings and realistic 
social interactions. Moreover, fNIRS has been applied 
to studying cognitive processes in diverse real-world 
scenarios (32,33). Looking ahead, this technique holds 
promise for applications in everyday life, providing 
insights into the brain activity patterns of healthy adults 
during dynamic, real-world tasks and contributing to a 
deeper understanding of human behavior.
 With the deepening of research, the equipment 
for fNIRS is being gradually upgraded. In 1989, the 
first commercial single-channel fNIRS system was 
introduced (34). In 1998, the first 10-channel fNIRS 
system was first used in the clinic (35). Initially, before 
2010, the focus was primarily on increasing the number 
of channels, transitioning from single-channel or 
multiple measurements to multi-channel systems for a 
single measurement. Presently, more advanced high-
density systems have been developed to accurately 
measure the blood flow in the cerebral cortex over a 
wider range. To enhance the applicability of fNIRS 
in various experimental environments and fields, 
efforts have been made to free the equipment from 
complex fiber optic cables. In 2009, a battery-powered 
wireless 22-channel system for adult PFC measurement  
appeared (36). Nowadays, multi-channel, wireless 
portable wearable devices have been used in many 
fNIRS studies, and fNIRS has made important progress 
in understanding brain activity, which is one of the 
potential advantages of fNIRS over other neuroimaging 
modalities. Advancements in hardware have led to 
the development of new high-density fNIRS systems, 
enabling comprehensive whole-brain measurements. 
Future efforts in fNIRS design are likely to focus on 
further enhancing the temporal and spatial resolution of 
the technology, as well as improving its overall accuracy. 
(Figure 2).

4. Application of fNIRS in the cognitive domain

In recent years, brain cognitive function has remained 
a focal point of research in neuroimaging and 
electrophysiology. The diagnosis of cognitive impairment 
necessitates a combination of subjective assessment 
and objective evidence. Commonly utilized imaging 
modalities in clinical practice include fMRI, EEG, and 
PET. Meanwhile, fNIRS has undergone significant 
advancements, evolving from single-channel to multi 
-channel systems and from single-region to whole-
brain imaging. This progress has overcome previous 
limitations in studying brain regions associated with 
cognitive function, paving the way for broader clinical 
applications. fNIRS offers several advantages over 
other imaging techniques when applied in the cognitive 
domain.
 Firstly, fNIRS is currently the only hemodynamic 
neuroimaging technology capable of directly monitoring 
changes in the concentration of both HbO2 and HbR (37). 
In contrast, the blood oxygen level dependent (BOLD) 
responses measured by fMRI are based on the proportion 
of HbR and do not provide information on hemoglobin 
concentration alone (14). The richer information 
provided by fNIRS allows for a more intuitive reflection 
of cortical activity and facilitates the use of differential 
analysis techniques, making it well-suited for real-
time monitoring of temporal and spatial changes in 
cerebral blood oxygenation during cognitive tasks. Some 
researchers have even suggested that HbO2 may be a 
more reliable indicator of cortical activation than HbR 
(38).
 Secondly, fNIRS is able to detect changes in the 
cerebral hemodynamics of participants during task 

Figure 2. The historical development of fNIRS. Illustration of 
technology updates (A) and application expansion (B) of fNIRS at 
different points in time.
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execution and is applicable to all possible participant 
populations, from newborns to the elderly, with fewer 
restrictions on participant behavior. Additionally, 
fNIRS is portable and easy to wear, allowing for 
studies involving freely moving subjects without being 
constrained by the experimental environment. This 
makes fNIRS particularly suitable for research on 
cognitive tasks performed in naturalistic settings by 
individuals of different age groups (39).
 Thirdly, compared with EEG, fNIRS offers a higher 
spatial resolution, which can locate the brain response 
to specific cortical areas (12). Compared with fMRI, 
fNIRS provides a higher temporal resolution, enabling 
better differentiation of signal contamination caused 
by physiological system signals and motion artifacts. 
Moreover, fNIRS is a non-ionizing technique, making it 
safer for human use compared to PET (9).
 Finally, fNIRS demonstrates compatibility with 
other electrical and magnetic devices (40). fNIRS can 
be used simultaneously with fMRI, EEG, PET (41) 
to complement each other achieve optimized imaging 
analysis. Studies have reported that combining fNIRS 
with another neuroimaging technique, such as EEG 
or fMRI, yields more efficient detection results than 
using either method alone (42). Additionally, fNIRS 
can be used to further investigate the mechanisms of 
neural stimulation techniques, including transcranial 
direct current stimulation (43). Apart from these 
unique advantages, fNIRS also possesses universal 
benefits such as non-invasiveness, cost-effectiveness, 
portability, and noise-free operation. Table 1 provides a 

comparison between fNIRS and commonly used imaging 
examinations in the cognitive field (15,44,45).

5. Combined application of fNIRS and other imaging 
techniques in the cognitive domain

At present, numerous studies highlight the potential 
benefits of integrating fNIRS and other imaging 
techniques, allowing researchers to investigate brain 
function from multiple perspectives and obtain a more 
comprehensive understanding of neural processes.
 The combination of EEG and fNIRS offers 
advantages in terms of temporal and spatial resolution. 
EEG provides high temporal resolution, capturing the 
fast dynamics of neuronal electrical activity, while 
fNIRS provides better spatial resolution, allowing for the 
localization of cortical activation. Moreover, EEG and 
fNIRS measure different aspects of brain activity, with 
EEG reflecting neuronal electrical activity and fNIRS 
capturing metabolic responses. This built-in validation 
of identified brain activity enhances the reliability of 
the results obtained from these two modalities (46). The 
complementary nature of the measurements obtained 
from EEG and fNIRS can provide a more comprehensive 
understanding of brain activity and function, offering a 
unique neural monitoring platform to investigate the NC 
mechanism (47).
 A study conducted by Cicalese et al. (48) examined 
the classification of subjects based on the degree of 
dementia using an EEG-fNIRS hybrid model. The 
results showed that when EEG and fNIRS were used 

Table 1. The comparison of fNIRS with other neuroimaging techniques

Technology

fNIRS

fMRI

EEG

PET

Advantages

1.Good temporal resolution
2.Good spatial resolution
3.Insensitive to motion artifacts
4.Good compatibility
5.Non-invasive
6.Portable and cost-effective

1.Excellent spatial resolution
2.Whole-brain imaging
3.Non-invasive

1.Excellent temporal resolution
2.Non-invasive
3.Portable and cost-effective

1.Good spatial resolution
2.High sensitivity for metabolic 
activity
3.Target specific molecules 
with tracers

Abbreviation: fNIRS: functional near-infrared spectroscopy. fMRI: functional magnetic resonance imaging. EEG: electroencephalograms. PET: 
positron emission tomography.

Disadvantages

1.Restricted to cortical measurements

1.Limited temporal resolution
2.Sensitive to movement artifacts
3.Expensive and non-portable
4.Limited compatibility
5.Relatively noisy

1.Limited spatial resolution
2.Prone to noise from muscle 
activity
3.Limited compatibility
4.Requires conductive scalp gel

1.Limited temporal resolution 
2.Invasive
3.Limited compatibility
4.Expensive and non-portable

Indications

1.Safe for all age groups
2.Cognitive and behavioral 
studies
3.Real-time brain 
monitoring

1.Functional brain mapping
2.Neurovascular coupling 
studies

1.Rapid detection of brain 
activity

1.Metabolic brain function 
studies

Contraindications

1.Care with severe scalp 
injuries

1.Claustrophobia
2.Metal implants or devices
3.Severe kidney dysfunction 
(due to contrast agents)

1.Severe scalp injuries
2.Hypersensitivity to 
conductive gel

1.Pregnancy and children
2.Severe kidney dysfunction
3.Allergies to radiotracers
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independently, the accuracy was 65.52% and 58.62%, 
respectively. However, when the EEG-fNIRS hybrid 
model was employed, the accuracy increased to 79.31%, 
demonstrating the enhanced performance achieved by 
integrating the complementary characteristics of EEG 
and fNIRS. These findings suggest that the hybrid EEG-
fNIRS system holds promise as a tool to enhance the 
diagnostic and evaluation processes for diseases such 
as AD. Cognitive deficits in AD have been linked to 
the disruption of brain networks (49). Li (50) used the 
fNIRS-EEG method to investigate the dynamic and local 
changes in AD-related brain networks, demonstrating the 
feasibility of this technique. This approach allows for the 
examination of both hemodynamic and electrical aspects 
of brain activity, providing valuable insights into the 
pathophysiology of AD.
 The combination of fMRI and fNIRS is one of the 
most commonly used multimodal imaging approaches. 
This is because fMRI equipment is generally not 
suitable for conducting experiments with participants 
in sitting or standing positions (51). On the other hand, 
fNIRS is applicable to a wide range of experimental 
conditions and can accommodate participants in various 
positions. Additionally, while fNIRS provides limited 
whole-brain coverage, the high spatial resolution of 
fMRI compensates for this limitation, resulting in a 
complementary combination of the two techniques.
 Some researchers have used fMRI and fNIRS to 
verify the feasibility of combining multiple techniques. 
Pereira (52) employed the fMRI-fNIRS multimodal 
approach to examine the possibility of converting spatial 
neuronal information from fMRI motion patterns into 
fNIRS settings of HbO2 and HbR concentrations. This 
innovative technique aimed to enhance the understanding 
of motor function by revealing detailed information 
about neural activity using fNIRS measurements.

6. Application of fNIRS in the cognitive impairment 
related to neurological and psychiatric diseases

6.1. Cognitive impairment associated with neurological 
diseases

6.1.1. Alzheimer's disease

AD is  the  most  prevalent  neurodegenera t ive 
disease globally and currently lacks a cure. Early 
pharmacological intervention and regular physical 
exercise can decelerate disease progression and enhance 
patients' quality of life (53). MCI acts as a transitional 
stage between normal aging and AD. It is important to 
note that not all individuals with MCI will progress to 
AD (54). MCI can serve as an early indicator of AD, and 
early diagnosis is crucial for timely intervention to delay 
the onset of dementia (55).
 fNIRS has shown promise in this area and provided 
insights into the functional alterations in the brain section 

associated with cognitive impairment. Ates suggests that 
the neural network behind emotion enhanced memory 
may involve interactions between frontal and subcortical 
regions. So, Ates and his colleagues used fNIRS to 
measure cortical activity during an emotional n-back task 
in 20 AD patients and 20 healthy older adults of similar 
age and sex. They found that only in positive emotional 
words, AD patients have higher HbO2 concentrations 
than healthy controls, and the cortical activity of AD 
patients with positive emotion words was hemispheric 
and left side activity was higher (56). Katzorke et al. 
selected 110 subjects from a cohort of 604 participants, 
half each with MCI patients and half each with healthy 
controls. Using fNIRS to measure hemodynamic 
responses during a verbal fluency task (VFT), the 
investigators found decreased hemodynamic responses in 
the inferior frontotemporal cortex in the MCI group. The 
hemodynamic response pattern during VFT can be used 
as one of the bases for early detection of AD (57). These 
studies show that AD or MCI patients with cognitive 
decline have reduced cortical oxygenation during 
cognitive tasks, which is consistent with the previous 
argument (Figure 3).
 Studies have shown that visuospatial deficits are 
one of the first symptoms of AD and are associated 
with lower activation of the parietal epithelial cortex as 
assessed by functional imaging (58).  Zeller et al. (59) 
utilized fNIRS to investigate the activation of parietal 
regions in patients with AD and healthy subjects during 
visuospatial tasks. Interestingly, they found that although 
healthy subjects exhibited significant parietal activation, 
there was no difference in visuospatial performance 
between the two groups. In a study by Haberstumpf et al 
long-term participation in the Vogel Study was analyzed 
in healthy older adults performing a clock-hand-
angle discrimination task (ADT) during visuospatial 
processing. Using fNIRS, significant activation in the 
parietal cortex was observed during visuospatial tasks, 
and this activation showed a significant increase in 
neuronal brain activity with increasing task difficulty 
(60). Building upon these findings, Haberstumpf et al. 
conducted a similar study on individuals with MCI (61) 
the activation of the parietal cortex, observed in healthy 
subjects, was significantly reduced in MCI patients. 
These results suggest that deficits in visuospatial 
processing in the parietal cortex may serve as a risk 
factor for the progression of MCI or AD. Therefore, 
measuring parietal cortex activation using fNIRS could 
potentially be employed as a reliable marker for the early 
detection and diagnosis of AD.
 Cognitive function requires a high level of functional 
interaction between network region. Functional 
connectivity, which refers to the synchronized activity 
between different brain regions, is thought to play a 
crucial role in cognitive processes. Research suggests 
that changes in functional connectivity may precede 
alterations in the activation of specific brain regions 
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(62). Tang and Chan (54) used fNIRS to analyze the 
functional connectivity of mild AD, MCI, and normal 
aging and found that the brain network of normal aging 
individuals exhibited higher regularity compared to AD 
patients, indicating that fNIRS can be a feasible tool for 
distinguishing AD from normal aging based on functional 
connectivity patterns. Nguyen et al. (63) used fNIRS 
to detect brain functional connectivity in cognitively 
normal older adults and patients with MCI, and found 
that in the VFT task, the inter-hemispheric connectivity 
in the healthy control group was significantly higher 
than the intra-hemispheric connectivity. It can be used as 
an effective indicator to distinguish cognitively normal 
elderly from MCI patients. In addition, left hemisphere 
connectivity was significantly reduced in MCI patients 
during the VFT task, and these findings demonstrate the 
potential of fNIRS to study brain functional connectivity 
in neurodegenerative diseases. Chan et al. (64) also 

proposed that brain functional connectivity analysis based 
on fNIRS can be used as an effective set of features for 
the diagnosis of AD, and AD patients have loss of brain 
functional connectivity and non-significant laterality. 
Moreover, connectivity disruption and frontal lobe 
oxygenation changes are more severe in AD patients than 
in patients with mild cognitive impairment (Figure 3) (11).

6.1.2. Stroke

Cognitive impairment is a common consequence of 
stroke, and fNIRS has emerged as a valuable tool for 
assessing brain activity and monitoring changes during 
cognitive tasks in patients with post-stroke cognitive 
impairment (PSCI) (65,66). Kong et al. (65) specifically 
focused on evaluating the functional connectivity of 
relevant cortex during memory tasks using fNIRS. They 
found that a decreased level of functional connectivity 
may serve as a marker of PSCI (Figure 3). Zou et al. 
employed fNIRS to study the differences in functional 
connectivity of brain networks between patients with 
PSCI and healthy controls. They discovered that the 
functional connectivity of brain networks in PSCI 
patients was significantly lower compared to healthy 
controls. However, there was no significant difference in 
functional connectivity between PSCI patients and stroke 
patients without PSCI (67).
 fNIRS is frequently used to assess the effectiveness 
of cognitive rehabilitation in stroke patients. Monitoring 
changes in brain activity during rehabilitation 
training using fNIRS is crucial for understanding the 
compensatory changes that underlie functional recovery 
after brain injury, ultimately improving the outcomes 
of rehabilitation interventions (68). Yang et al. (69) 
used fNIRS to evaluate the effect of transcranial direct 
current stimulation (tDCS) on the rehabilitation of 
cognitive impairment in stroke patients. After tDCS 
treatment, fNIRS measured increased activation of the 
left superior temporal cortex and improved functional 
connectivity between the cerebral hemispheres in stroke 
patients. Huo et al. (70) used fNIRS to evaluate the 
changes in effective connectivity within the cortical 
network induced by median nerve electrical stimulation 
(MNES) in stroke patients, and found that the effective 
connectivity between bilateral prefrontal PFC and left 
occipital lobe (LOL) in stroke patients in the MNES state 
was significantly higher than that in the resting state. 
Zhang et al. (71) used fNIRS as one of the indicators to 
evaluate the effect of intermittent theta burst stimulation 
(iTBS) combined with cognitive training on the 
treatment of PSCI. The left dorsolateral prefrontal cortex 
(DLPFC), prefrontal polar cortex, and left Broca's region 
were activated. These studies collectively suggest that 
fNIRS can serve as an effective tool for monitoring and 
evaluating brain activity in stroke patients undergoing 
cognitive rehabilitation. By providing objective 
measures of brain function, fNIRS can assist clinicians in 

Figure 3. Application of fNIRS in cognitive impairment associated 
with central nervous system diseases. Illustration of application 
of fNIRS in the cognitive impairment related to neurological and 
psychiatric diseases. Left: neurological diseases (shown in blue), 
including Alzheimer's disease (AD), stroke, Parkinson's disease (PD), 
traumatic brain injury (TBI) and multiple sclerosis (MS). Using 
fNIRS, decreased HbO2 and impaired brain functional connectivity 
can be detected in some regions of the cerebral cortex in AD and 
stroke patients, activation of the non-motor prefrontal cortex (PFC) 
can be observed in PD patients to compensate for motor function, and 
lower but more extensive activation of the PFC can be detected in TBI 
patients. In patients with MS, fNIRS can be used as a tool to assess 
cortical hemodynamics. Right: psychiatric diseases (shown in pink), 
including depression, bipolar disorder (BD), schizophrenia (SCZ), 
autism spectrum disorders (ASD) and attention deficit hyperactivity 
disorder (ADHD). Using fNIRS, decreased cortical activation and 
impaired brain functional connectivity can be detected in patients with 
depression, decreased and delayed cortical activation can be observed 
in BD patients, reduced but more widespread cortical activation in SCZ 
patients, or delayed over-activation, can be detected, damaged brain 
functional connectivity can be observed in ASD patients, and decreased 
cortical activation can be detected in ADHD patients.
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formulating and optimizing individualized rehabilitation 
treatment programs, as well as accurately assessing 
rehabilitation efficacy and prognosis.

6.1.3. Parkinson's Disease

PD is a neurodegenerative disorder characterized by 
motor symptoms and various non-motor symptoms, 
including cognitive decline, particularly in executive 
function (72). Stuart et al. used fNIRS to measure PFC 
activity during tasks to distinguish between PD patients 
and healthy individuals (73). It has been shown that 
executive dysfunction leads to freezing of gait (FOG), 
which is a common episodic disorder in PD patients 
(74). Previous studies have shown that PD patients often 
compensate for impaired motor function by activating 
the PFC (75). Currently, in PD, fNIRS is mainly used 
to investigate changes in cortical activity during gait 
and postural stability tasks (76). Maidan et al. (77) used 
fNIRS to measure HbO2 levels in Brodmann area 10 
before and during FOG revealing a direct association 
between FOG and dysfunction in the frontal lobe. 
However, there are exceptions to the compensatory 
activation pattern. Bonilauri et al. (78) used fNIRS to 
evaluate PD at different stages. They divided 39 PD 
patients into early PD and middle PD groups based on 
the Hoehn-Yahr (HY) scale and employed a whole-head 
fNIRS system with 102 measurement channels to monitor 
brain activity. The group-level activation map indicated 
that the middle PD group exhibited higher activation 
in the frontal regions compared to the early PD group, 
while the opposite pattern was observed in the motor and 
occipital regions. This suggests that the PFC in non-motor 
regions may provide a compensatory mechanism for PD-
related movement disorders (Figure 3).

6.1.4. Traumatic brain injury

TBI can result in long-term neurobehavioral and 
cognitive impairment (79). Executive function deficits, 
which involve the PFC, are commonly observed in 
patients with neurocognitive impairment following 
TBI (80). Chang et al. recruited 37 patients with 
neurocognitive impairment after TBI and 60 healthy 
controls to measure HbO2 in the PFC region during 
the Stroop and n-back tasks using a 22-channel fNIRS 
device. The results revealed that TBI patients exhibited 
lower but more widespread brain activation during 
the 2-back and Stroop color word congruency tasks 
compared to healthy controls (Figure 3) (81). Plenger 
et al. used fNIRS to evaluate neural changes in TBI 
patients during the Stroop task. Compared with the 
healthy group, the patient group had a significant 
increase in HbO2 in the bilateral frontal lobe and greater 
neural activity in the frontal lobe (82). These findings 
indicate the potential of fNIRS in identifying frontal 
inefficiency in TBI patients.

6.1.5. Multiple sclerosis

MS is a degenerative disease that affects the central 
nervous system, characterized by inflammation, 
demyelination, and axonal damage (83), and cognitive 
impairment and motor impairment are common in 
patients with MS (84). Stojanovic-Radic et al. (85) used 
fNIRS to examine differences in neural activation in the 
orbitofrontal brain regions during a working memory 
(WM) task between individuals with MS and healthy 
controls. The results demonstrated that the MS group 
exhibited elevated HbO2 concentrations and increased 
brain activation in the left superior frontal gyrus at lower 
levels of task difficulty (1-back), but decreased activation 
at higher levels of task difficulty (2-back and 3-back) 
compared to healthy controls (Figure 3). This study was 
the first to utilize fNIRS to investigate brain activation 
during a cognitive task in individuals with MS.
 The application of fNIRS in cognitive impairment in 
neurological diseases are reported in Table 2.

6.2. Cognitive impairment associated with Psychiatric 
diseases

Cognitive impairment is a common characteristic of 
various mental disorders, including depression. fNIRS 
has emerged as a valuable tool in psychiatric research, 
allowing for the measurement of cortical dysfunction 
during cognitive tasks. It has been utilized in several 
mental disorders such as SCZ, Major depressive disorder 
(MDD), and bipolar disorder (BD) The application of 
fNIRS in cognitive impairment in psychiatric diseases 
are summarized in Table 3.

6.2.1. Depression

Depression is often associated with cognitive impairment 
(86), and executive function, which relies on the PFC, 
is one aspect of cognition that is affected. The PFC 
is involved in various high-level cognitive functions, 
including executive function, WM, and language 
processing (87).
 Kondo et al. (88) used fNIRS to assess changes 
in prefrontal and temporal lobe HbO2 concentrations 
during pleasant and unpleasant image recall tasks in 
patients with MDD and healthy controls. It was found 
that HbO2 in the bilateral frontal region of MDD group 
was significantly lower than that of the control group 
during the unpleasant state. Downey et al. (89) used 
fNIRS to measure frontal lobe hemodynamic responses 
during category VFT and WM n-back tasks in depressed 
patients and found that bilateral frontal lobe hemoglobin 
responses were lower. Liu (90) used fNIRS to monitor 
the concentration of HbO2 in the brain of adolescents 
with depression and healthy controls. The study revealed 
that depressed adolescents exhibited significantly lower 
cortical activation of hemodynamic responses in the PFC 
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compared to healthy controls. The mean inter-channel 
connectivity strength was also found to be higher in 
the healthy control group than in the depression group. 
These findings suggest that adolescents with depression 
exhibit abnormal brain activation patterns and reduced 
task-related functional connectivity compared to their 
healthy counterparts. In Ishii's study, MDD patients 
showed significantly lower activation in PFC areas 
and inferior parietal areas, especially in the left, when 
performing a word-making task than controls (91). These 
studies suggest that the brains of depressed patients 
exhibit abnormal activation patterns compared to healthy 
controls, and fNIRS may be a useful tool for assessing 
psychophysiological indicators of depressed patients 
and distinguishing depressed patients from normal 
individuals (Figure 3).

6.2.2. Bipolar disorder

BD, characterized by the presence of both manic and 
depressive episodes, with depressive episodes being 
a typical symptom. Similar to depression, the PFC 
plays a significant role in the pathophysiology of BD. 
Kameyama (92) used fNIRS to compare changes in 
HbO2 concentration in the frontal lobe during cognitive 
and motor tasks in BD, MDD, and healthy controls. 
The study found that individuals with BD exhibited 
delayed onset activation in the frontal lobe (Figure 3), 
while those with MDD showed reduced activation in 
the frontal lobe. These differences in frontal activation 
patterns suggest that fNIRS may be a reliable tool for 
differentiating between BD and MDD. Nishimura (93) 
compared prefrontal hemodynamic responses during 
cognitive tasks between the hypomanic and depressive 
states in individuals with BD. They used fNIRS to assess 
prefrontal function during VFT in hypomanic, depressed, 
and healthy control groups. The study revealed that 
VFT performance did not differ significantly between 
the hypomanic, depressive, and healthy control groups. 
However, the activation rate in the PFC was significantly 
lower in individuals with BD compared to the healthy 
control group (Figure 3). The left DLPFC exhibits 
significantly greater hemodynamic changes in individuals 
with BD during hypomanic episodes compared to 
those with depression. Furthermore, the severity of 
hypomanic symptoms was positively correlated with 
activation in the left DLPFC and frontopolar cortex in 
BD patients. Follow-up measurements in hypomanic 
patients showed decreased prefrontal activation after 
the resolution of hypomanic symptoms. These findings 
suggest that there are distinct differences in prefrontal 
hemodynamics corresponding to manic and depressive 
states in individuals with BD, and fNIRS may serve as a 
valuable tool for objectively assessing the state-dependent 
characteristics of prefrontal hemodynamics in BD.

6.2.3. Schizophrenia

Cognitive impairment is a core feature of SCZ and is 
often observed years before the onset of overt psychotic 
symptoms (94). Koike (95) used multi-channel fNIRS 
to measure hemodynamic changes during n-back WM 
tasks with different cognitive loads in patients with 
SCZ and healthy controls and found that the activation 
of prefrontal activity was reduced but more extensive 
in SCZ patients (Figure 3). Noda (96) used fNIRS to 
focus on the changes in HbO2 levels in the prefrontal and 
temporal lobes in the late stage of the task and found an 
abnormal re-increase of HbO2 levels. Kumar (97) used 
fNIRS to examine hemodynamic activity during WM 
tasks in SCZ. The results found delayed but compensatory 
hyperactivation in the right frontopolar cortex of the SCZ 
(Figure 3), which, the authors speculate, may underlie the 
WM deficit in the SCZ. According to the above studies, 
Hemodynamic changes in WM of patients with chronic 
SCZ detected using fNIRS may be a potential biomarker.
 As a novel neurophysiological approach, fNIRS is 
increasingly being used in the study of SCZ and frontal 
lobe dysfunction. To date, several studies have employed 
fNIRS to assess hemodynamic changes in the frontal 
lobe in various contexts, demonstrating that distinct 
hemodynamic response patterns may serve as potential 
imaging biomarkers in individuals with SCZ and fNIRS 
may become an effective clinical tool for evaluating this 
population.

6.2.4. Autism spectrum disorder/ attention deficit 
hyperactivity disorder

ASD is characterized by impaired social communication 
accompanied by stereotyped behaviors and limited 
interests (DSM-5). Executive dysfunction is partly 
responsible for these symptoms (98). A special feature 
of fNIRS for this population is the ability to study 
neural development from an early age (99), leading to a 
better understanding of the neural mechanisms of ASD. 
Unlike fMRI, which requires a closed environment with 
loud noise and patient immobilization, fNIRS is quiet 
and portable, making it more suitable for individuals 
with ASD who may have difficulty tolerating the fMRI 
environment (100). However, some individuals with 
ASD may also resist wearing near-infrared caps, limiting 
the feasibility of traditional fNIRS approaches (101), 
Therefore, the development of remote and non-contact 
near-infrared systems is a future direction in this field. 
Chan et al. (102) used fNIRS to measure prefrontal 
hemodynamic data in individuals with ASD and typically 
developing (TD) individuals. The study revealed 
significantly lower functional connectivity in the PFC of 
individuals with ASD compared to TD individuals. Han 
et al. (103) used fNIRS to investigate the impact of WM 
load on functional connectivity in the PFC of individuals 
with ASD. The findings revealed that individuals with 
high-functioning ASD exhibited WM impairment that 
was accompanied by load-dependent changes in intra-

(61)
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right hemisphere connectivity. These results suggest 
that disruptions in functional neural connectivity during 
different cognitive processes may contribute to the poor 
performance on WM tasks observed in individuals with 
ASD (Figure 3).
 Attention deficit hyperactivity disorder (ADHD) 
is one of the most common developmental disorders. 
ADHD is characterized by persistent inattention and 
hyperactive impulsive symptoms (104). Some researchers 
(105) have explored the method of distinguishing 
between children with ADHD and TD children based on 
fNIRS. Insufficient activation of the right prefrontal lobe 
as assessed by fNIRS was found to serve as a potentially 
valid biomarker for classifying children with ADHD at 
the individual level (Figure 3).

7. Application of fNIRS in the rehabilitation of 
cognitive impairment

The frequent occurrence of neurological and psychiatric 
diseases is often accompanied by a high incidence 
of cognitive impairment, which is one of the most 
significant functional disabilities affecting patients, 
alongside motor disorders, thereby impacting daily 
life.  Consequently, early diagnosis and rehabilitation 
evaluation of cognitive impairment have become 
increasingly important. fNIRS, a robust tool for assessing 
brain self-regulation, plays a pivotal role in the early 
diagnosis and evaluation of cognitive impairment. Yoo 
et al. demonstrated the utility of fNIRS in distinguishing 
patients with MCI from healthy controls, successfully 
identifying differences in 15 individuals with MCI 
and 15 age-matched healthy participants. This study 
highlights the potential of fNIRS as a novel approach 
for the early diagnosis of AD (106). In clinical practice, 
symptom assessment for patients with depression 
and SCZ primarily relies on standardized scales. In 
a study by Vural Keleş and colleagues, participants 
were stratified into high-score and low-score groups 
based on their Beck Depression Inventory scores. The 
authors compared WM performance and hemodynamic 
changes between the groups. While no significant 
differences in WM performance were observed, fNIRS 
analysis revealed significantly greater activation in the 
right frontal lobe of the high-score group compared 
to the low-score group, providing novel insights into 
the neurophysiological underpinnings of depression 
(107). The diagnosis of ADHD is predominantly based 
on clinical observation and behavioral assessment 
scales, which can be subjective (108). To address this 
limitation, researchers have explored the use of fNIRS 
for ADHD diagnosis. Crippa et al. demonstrated 
significant differences in brain activation levels between 
children with ADHD and healthy controls, achieving a 
diagnostic accuracy exceeding 80% (109). Furthermore, 
the capacity of fNIRS to provide real-time monitoring of 
cerebral hemodynamics offers a valuable complement 

(64)
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to traditional scale-based assessments in rehabilitation 
contexts.
 Beyond its diagnostic applications, fNIRS is also 
widely used in evaluating the efficacy of treatments 
for cognitive impairment, often in combination with 
various neural modulation techniques such as tDCS (69) 
and MNES (70).  By enabling real-time and repeated 
dynamic monitoring of brain function, fNIRS allows for 
the observation of individual cortical responses, thereby 
facilitating the determination of optimal stimulation 
parameters, including intensity, frequency, and duration.  
This approach is crucial for evaluating rehabilitation 
outcomes and optimizing intervention strategies.

8. Conclusions

Cognition fundamentally relies on the normal 
functioning of the cerebral cortex. Any factors that 
disrupt the structure or function of the cerebral cortex 
can lead to cognitive impairment, with common 
causes including neurodegenerative and psychiatric 
diseases. Different forms of cognitive impairment are 
often interconnected, such that deficits in one domain 
may give rise to abnormalities in others, making the 
diagnosis and treatment of cognitive impairment 
particularly challenging (110). fNIRS, as a non-invasive 
and portable neuroimaging modality, is particularly 
well-suited for studying hemodynamic responses in 
the cortex during cognitive tasks in populations such 
as children, older adults, and individuals with unique 
needs. Additionally, fNIRS holds significant promise 
for advancing cognitive neuroscience in real-world 
contexts. Recent advancements in fNIRS research have 
begun to elucidate the complex relationships between 
cognitive processes—such as learning, memory, 
and language—and regional CBF and metabolism. 
Beyond its applications in cognitive research, fNIRS 
has shown potential in investigating brain functional 
changes induced by physical activity. The application 
of fNIRS in rehabilitation is particularly noteworthy for 
its ability to provide precise imaging-based evidence 
to guide intervention planning. A key to improving 
rehabilitation outcomes lies in the development of 
targeted clinical interventions based on brain function 
remodeling. In future clinical practice, the development 
of comprehensive brain function assessment frameworks 
based on fNIRS may allow real-time monitoring of 
cortical responses induced by rehabilitation, thereby 
providing insights into neural plasticity. Advanced 
analysis of fNIRS data could not only deepen our 
understanding of the mechanisms underlying this 
technology but also inform the design of personalized 
rehabilitation plans, offering valuable perspectives on 
treatment efficacy and prognosis.
 However, its current limitation in penetrating deep 
brain structures, restricts its full potential. fNIRS relies 
on light penetration and reflection, typically reaching 
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a depth of 1.5 to 2cm. Consequently, it is unable to 
capture comprehensive structural images or anatomical 
information (12). Its primary utility lies in studying 
metabolic activities in superficial areas, rather than deep 
structures like the hippocampus or amygdala (111). 
To unlock the full capabilities of fNIRS, it is crucial 
to overcome this limitation and extend its application 
to explore deep brain function. Consequently, the 
integration of fNIRS with other imaging modalities is an 
inevitable trend in its development. Multimodal imaging 
approaches offer a more comprehensive and systematic 
assessment of brain function. Motion artifacts affect 
most imaging techniques, including fNIRS. However, 
fNIRS exhibits relatively higher tolerance to motion 
artifacts compared to other neuroimaging methods, 
making it suitable for use during physical activities (37). 
To address motion artifacts in fNIRS studies, researchers 
have devised various methods to minimize signals 
originating from non-brain tissue activities. Among these 
methods, short-channel subtraction has demonstrated 
notable efficacy in reducing extracerebral responses and 
is often regarded as the "gold standard" (67). Despite 
its application across multiple research domains, the 
absence of standardized protocols for data processing 
and analysis in fNIRS studies significantly hinders cross-
study comparisons (15,42).
 A considerable body of research on fNIRS has 
primarily focused on the blood flow and metabolism 
within brain regions associated with various types of 
cognitive impairment. However, the understanding 
of the brain network mechanisms underlying fNIRS 
remains limited, with divergent theoretical perspectives, 
particularly regarding brain network connectivity and 
the synergistic interactions between brain regions. 
Consequently, there is substantial potential for further 
exploration and refinement of fNIRS in this context. This 
review provides an overview of the application of fNIRS 
in cognitive impairment associated with various diseases 
and highlights its potential in the early detection and 
diagnosis of AD and MCI. By measuring oxygenation 
levels in the frontal, temporal, and parietal lobes during 
cognitive tasks and comprehensively analyzing the brain 
functional connectivity, fNIRS can provide valuable 
insights into the study of cognitive impairment related 
to central nervous system diseases. This review aims 
to stimulate further research in the field of fNIRS, 
facilitating the exploration of neural mechanisms 
underlying cognitive activity. It is anticipated that with 
ongoing technological advancements, fNIRS will evolve 
into a more user-friendly research tool with expanded 
clinical applications.
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