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SUMMARY: Cognitive impairment refers to the impairment of higher brain functions such as perception, thinking
or memory that affects the individual's ability to perform daily or social activities. Studies have found that changes
in neuronal activity during tasks in patients with cognitive impairment are closely related to changes in cerebral
cortical hemodynamics. Functional near-infrared spectroscopy is an indirect method to measure neural activity based
on changes in blood oxygen concentration in the cerebral cortex. Due to its strong anti-motion interference, high
compatibility, and almost no restriction on participants and environment, it has shown great potential in the research
field of cognitive impairment. Recognizing these benefits, this comprehensive review systematically elucidates
the rationale, historical development, advantages and disadvantages of functional near-infrared spectroscopy, and
also discusses the applications of combining functional near-infrared spectroscopy with other detection techniques.
Additionally, this review summarized how functional near-infrared spectroscopy can be applied to cognitive impairment
caused by different diseases, ultimately aiding the study of neural mechanisms of cognitive activities, which is crucial
for the diagnosis, differentiation and treatment of cognitive impairment.
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1. Introduction

The growing prevalence of cognitive impairment is
predominantly attributed to an aging population, further
compounded by rising psychological stress. This
escalating challenge profoundly undermines individual
quality of life and imposes substantial economic strains
on families and society. Dementia, a leading cause of
cognitive impairment, represents a critical global health
challenge, with the number of affected individuals
projected to reach 139 million by 2050 (/). Another
major category of mental disorders associated with
cognitive impairment is currently among the most
economically burdensome diseases worldwide (2).
Cognition encompasses a wide range of intricate and
advanced brain functions, such as perception, attention,
memory, and thinking. It represents the human brain's
capacity to extract, process, and retain information
through thought, experience, and emotion. Any factor that
disrupts the normal structure and function of the brain
can lead to cognitive impairment. Common causes of
cognitive impairment include chronic neurodegenerative
diseases, stroke, traumatic brain injury (TBI), and mental
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disorders (3,4).

Neurodegenerative diseases affecting memory mainly
include Alzheimer's disease (AD), Parkinson's disease
(PD) and so on. AD is the leading cause of dementia
(5). The fifth edition of the Diagnostic and Statistical
Manual of Mental Disorders of the American Psychiatric
Association (DSM-5) classifies mild cognitive
impairment (MCI) and dementia as "neurocognitive
disorders", which are prevalent degenerative conditions
affecting the central nervous system, primarily in older
individuals but also in younger populations, particularly
those with genetic predispositions. MCI represents
an intermediate stage between normal cognition and
dementia, characterized by largely preserved functional
ability (6,7). Dementia is typically diagnosed when
cognitive impairment significantly impairs social or
occupational functioning. Mental disorders such as
schizophrenia (SCZ), depression, and autism spectrum
disorder (ASD), often influenced by genetic factors,
are also among the major contributors to cognitive
impairment.

However, the diagnosis of cognitive impairment is
highly complex. In clinical practice, the diagnosis of
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various subtypes of cognitive impairment relies primarily
on clinical manifestations and auxiliary examinations.
Auxiliary examinations encompass imaging studies,
laboratory tests, and other assessments. The clinical
manifestations mainly depend on the judgment of
the doctor. During cognitive function assessments,
clinicians initially conduct a subjective evaluation and
closely monitor changes in patients' daily lives. Patients
or their family members may report symptoms such as
memory loss and cognitive decline. If patients neglect or
withhold relevant information, doctors should actively
inquire and observe for signs of cognitive decline during
communication, such as forgetting important items like
keys, appointments, or medication. Patients may also
report changes in mood and behavior, including anxiety,
depression, or apathy. However, it is crucial to note that
a certain degree of cognitive slowing is a typical feature
of normal aging (8). Distinguishing whether a patient's
cognitive decline holds diagnostic significance poses a
challenge for general clinicians.

Objective assessment is a crucial component in
diagnosing cognitive impairment. Two commonly used
screening scales in clinical practice are the Mini-Mental
State Examination (MMSE) and the Montreal Cognitive
Assessment (MoCA). While these evaluation methods
are simple to administer, they can be influenced by
subjective factors such as region, language proficiency,
and education level of the subjects. Accurate
interpretation often requires experienced clinicians.
To overcome these limitations, additional auxiliary
examinations are frequently employed in the diagnostic
process, including functional magnetic resonance
imaging (fMRI), electroencephalograms (EEG), and
positron emission tomography (PET). But there are still
dilemmas in the use of these research tools. EEG has low
spatial resolution and poses challenges in source tracing
analysis (9). The equipment for fMRI is expensive
and bulky (/0), requiring participants to be completely
immobilized in a closed and noisy environment during
the scanning process which hinders the examination
of brain function during task performance (/7). PET
is invasive as it requires the use of radioisotopes and
involves ionizing radiation exposure effects (/1,12).
Therefore, the development of new assessment tools for
cognitive impairment research is crucial.

Functional near-infrared spectroscopy (fNIRS), is
an emerging optical imaging technology that has gained
attention in recent years. The myriad advantages it offers
in monitoring brain function have piqued the interest
of researchers, despite its current nascent stage of
development (/3). fNIRS provides valuable information
with high temporal and spatial resolution for localizing
brain function during cognitive task performance.
This capability enables stereotyping and localization
diagnosis of brain function, introducing a new dimension
to brain function detection. Furthermore, fNIRS is
highly compatible with other techniques, making it a
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valuable complement to existing detection methods.
The integration of multi-dimensional cognitive function
evaluation holds the potential to enhance the accuracy
and sensitivity of cognitive impairment.

Based on the aforementioned reasons, this review
provides a comprehensive summary of the principles,
applications, and historical evolution of fNIRS
technology. It focuses on the extensive use of fNIRS
in the domain of cognitive impairment related to
neurological and psychiatric diseases. The objective
is to offer a comprehensive overview of the current
application status and future prospects of fNIRS in the
field of cognitive impairment.

A systematic search of the PubMed database was
conducted using the terms "(functional near-infrared
spectroscopy OR fNIRS) AND (Cognitive impairment
OR Cognitive disorder OR Cognitive decline OR
Cognitive dysfunction)", initially identifying 826
articles. To refine the selection, filters were applied for
article type, publication period, and language, narrowing
the pool to 126 studies. The retrieved records were
then imported into a citation management software for
further screening and removal of duplicates. Inclusion
criteria: Eligible studies encompassed Clinical Studies,
Clinical Trials, Comparative Studies, Evaluation Studies,
Observational Studies, Randomized Controlled Trials,
and Validation Studies. Articles published between
2005 and 2024 were considered, ensuring coverage of
nearly two decades of research in the field. Exclusion
criteria: Studies were excluded if they were written in
non-English languages or if fNIRS was not employed to
measure brain activation during cognitive tasks.

2. The rationale for fNIRS

Spectroscopy theory serves as one of fNIRS'
fundamental theoretical foundations. The two major
chromophores in biological tissues are oxyhemoglobin
(HbO,) and deoxyhemoglobin (HbR). These proteins
exhibit different light absorption characteristics for
near-infrared light, with absorption varying according
to wavelength (Figure 1A). HbR absorbs more strongly
below 790 nm, while HbO, absorbs more strongly
above 790 nm (/4). During fNIRS measurements, near-
infrared light of different wavelengths is emitted by the
light source and passes through the layers of cranial
structures to reach the neuronal tissue. Within the
tissue, light undergoes absorption and scattering. The
absorption and scattering processes adhere to the Beer-
Lambert law, enabling the noninvasive quantification
of cortical HbO, and HbR concentrations through a
modified Beer-Lambert law (/5). These concentration
changes can be used as surrogate markers of cerebral
blood flow (CBF), thus providing a new means to study
brain function (/2).

Another crucial principle underlying fNIRS stems
from neurovascular coupling (NC) (Figure 1B). It
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Figure 1. The basic principles of fNIRS. The basic principles of fNIRS including the absorption coefficient of oxygenated and deoxygenated
hemoglobin at different wavelengths (A), the mechanism of neurovascular coupling (B), and the propagation path of near-infrared light (C). (A): it
shows that oxygenated hemoglobin (HbO,) and deoxygenated hemoglobin (HbR) can be absorbed simultaneously in the near infrared wavelength
range of 700-900 nm. (B): when cognitive activity occurs, cerebral blood flow (CBF) flows from arterioles to venules, local CBF increases, HbR
decreases (shown in purple blood cells), HbO, increases (shown in red blood cells), and more O, is produced to supply neuronal activity. Thus, fNIRS
can indirectly reflect the neuronal activity by measuring the changes of HbO, and HbR. (C): illustration of the path (shown in red banana shape)
followed by the near-infrared photons from the light source through the different layers of the head to the detector.

involves the intricate connections between neural activity,
CBEF, and blood oxygen levels. These connections involve
neurons, glial cells, neurotransmitters, and chemical
molecules within the brain microenvironment. Increased
neuronal activity leads to an elevation in regional CBF,
meeting the higher metabolic demands of the brain
while simultaneously triggering an increase in oxygen
delivery (/6). Furthermore, NC involves a process
wherein heightened brain activity during affective or
cognitive tasks corresponds with increased blood flow
and oxygen consumption (/7). Neuronal activity relies
on oxygen supplied through blood metabolism to sustain
its functionality. Consequently, local changes in cerebral
hemodynamics occur during cognitive processes, leading
to enhanced blood flow towards activated brain regions,
which is reflected by an increase in HbO, concentration
and a decrease in HbR concentration (15).

Based on the aforementioned theory, fNIRS is a non-
invasive and safe technique that utilizes near-infrared
light to target specific brain regions on the surface of
the subject's head. This light, with a wavelength range
of 700-900 nm, can penetrate the skull and reach the
cerebral cortex, which is approximately 20-30 mm deep
in the brain, after undergoing reflection, scattering, and
absorption by the tissue. The emitted light then exits
the scalp in a "banana-shaped" path and is captured by
a nearby detector (Figure 1C) (/7). fNIRS enables the
assessment of relative concentration variations of two
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hemoglobin species within the cerebral cortex through
the detection of light absorption at distinct wavelengths.
This approach provides insights into CBF alterations,
facilitating the monitoring of local brain tissue
metabolism. Consequently, it allows for an understanding
of neural activity in the brain during cognitive tasks.

3. History of fNIRS development and application in
the field of cognition

The development and application of fNIRS in the
field of cognition can be traced back to the late 1970s
when Jobsis first reported the use of near-infrared light
to noninvasively monitor changes in cortical tissue
oxygenation in cats (/8). In 1993, Hoshi and colleagues
used fNIRS to study cognitive function and found that
HbO, concentration increased and HbR concentration
decreased in the prefrontal cortex (PFC) of subjects
during task performance (/9). And they first recorded
PET and fNIRS data simultaneously in 1994 (20).

The ability of fNIRS to monitor oxygenation levels led to
its rapid application in various diseases, including mental
disorders (21), stroke (22), PD (23), multiple sclerosis
(MS) (24), and so on. In 1996, Kleinschmidt performed
the first simultaneous fMRI and fNIRS to record human
brain activation (25). In 1997, Fallgatter published the
first article in his series of NIRS studies, demonstrating a
loss of hemispheric functional asymmetry in Alzheimer's
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dementia (26). In 1998, the first commercial single-
channel continuous wave imaging system was used
in neonates, and an increase in HbO, was found in the
visual cortex of awake infants induced by visual stimuli
(27). Sakatani et al. used fNIRS to measure changes
in HbO, and HbR in the frontal lobes of Parkinson's
patients during electrical stimulation. They found that
these changes resembled those observed during cognitive
tasks, indicating the involvement of a complex neuronal
circuit in the frontal lobe (23). In 2004, Macket et al.
recorded the first simultaneous magnetoencephalogram
(MEG) and fNIRS data (28). fNIRS has been
increasingly utilized to investigate a wide range of
cognitive domains, including executive function,
attention, memory, language, cognition, and decision-
making. Numerous studies have employed fNIRS to
elucidate the neural mechanisms underlying infant brain
development and cognitive maturation (29-37). With its
high ecological validity, fNIRS enables the observation
of brain activity during naturalistic settings and realistic
social interactions. Moreover, fNIRS has been applied
to studying cognitive processes in diverse real-world
scenarios (32,33). Looking ahead, this technique holds
promise for applications in everyday life, providing
insights into the brain activity patterns of healthy adults
during dynamic, real-world tasks and contributing to a
deeper understanding of human behavior.

With the deepening of research, the equipment
for fNIRS is being gradually upgraded. In 1989, the
first commercial single-channel fNIRS system was
introduced (34). In 1998, the first 10-channel fNIRS
system was first used in the clinic (35). Initially, before
2010, the focus was primarily on increasing the number
of channels, transitioning from single-channel or
multiple measurements to multi-channel systems for a
single measurement. Presently, more advanced high-
density systems have been developed to accurately
measure the blood flow in the cerebral cortex over a
wider range. To enhance the applicability of fNIRS
in various experimental environments and fields,
efforts have been made to free the equipment from
complex fiber optic cables. In 2009, a battery-powered
wireless 22-channel system for adult PFC measurement
appeared (36). Nowadays, multi-channel, wireless
portable wearable devices have been used in many
fNIRS studies, and fNIRS has made important progress
in understanding brain activity, which is one of the
potential advantages of fNIRS over other neuroimaging
modalities. Advancements in hardware have led to
the development of new high-density fNIRS systems,
enabling comprehensive whole-brain measurements.
Future efforts in fNIRS design are likely to focus on
further enhancing the temporal and spatial resolution of
the technology, as well as improving its overall accuracy.
(Figure 2).

4. Application of fNIRS in the cognitive domain
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Figure 2. The historical development of fNIRS. Illustration of
technology updates (A) and application expansion (B) of fNIRS at
different points in time.

In recent years, brain cognitive function has remained
a focal point of research in neuroimaging and
electrophysiology. The diagnosis of cognitive impairment
necessitates a combination of subjective assessment
and objective evidence. Commonly utilized imaging
modalities in clinical practice include fMRI, EEG, and
PET. Meanwhile, fNIRS has undergone significant
advancements, evolving from single-channel to multi
-channel systems and from single-region to whole-
brain imaging. This progress has overcome previous
limitations in studying brain regions associated with
cognitive function, paving the way for broader clinical
applications. fNIRS offers several advantages over
other imaging techniques when applied in the cognitive
domain.

Firstly, fNIRS is currently the only hemodynamic
neuroimaging technology capable of directly monitoring
changes in the concentration of both HbO, and HbR (37).
In contrast, the blood oxygen level dependent (BOLD)
responses measured by fMRI are based on the proportion
of HbR and do not provide information on hemoglobin
concentration alone (/4). The richer information
provided by fNIRS allows for a more intuitive reflection
of cortical activity and facilitates the use of differential
analysis techniques, making it well-suited for real-
time monitoring of temporal and spatial changes in
cerebral blood oxygenation during cognitive tasks. Some
researchers have even suggested that HbO, may be a
more reliable indicator of cortical activation than HbR
(38).

Secondly, NIRS is able to detect changes in the
cerebral hemodynamics of participants during task
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execution and is applicable to all possible participant
populations, from newborns to the elderly, with fewer
restrictions on participant behavior. Additionally,
fNIRS is portable and easy to wear, allowing for
studies involving freely moving subjects without being
constrained by the experimental environment. This
makes fNIRS particularly suitable for research on
cognitive tasks performed in naturalistic settings by
individuals of different age groups (39).

Thirdly, compared with EEG, fNIRS offers a higher
spatial resolution, which can locate the brain response
to specific cortical areas (/2). Compared with fMRI,
fNIRS provides a higher temporal resolution, enabling
better differentiation of signal contamination caused
by physiological system signals and motion artifacts.
Moreover, fNIRS is a non-ionizing technique, making it
safer for human use compared to PET (9).

Finally, fNIRS demonstrates compatibility with
other electrical and magnetic devices (40). fNIRS can
be used simultaneously with fMRI, EEG, PET (47)
to complement each other achieve optimized imaging
analysis. Studies have reported that combining fNIRS
with another neuroimaging technique, such as EEG
or fMRI, yields more efficient detection results than
using either method alone (42). Additionally, fNIRS
can be used to further investigate the mechanisms of
neural stimulation techniques, including transcranial
direct current stimulation (43). Apart from these
unique advantages, fNIRS also possesses universal
benefits such as non-invasiveness, cost-effectiveness,
portability, and noise-free operation. Table 1 provides a

comparison between fNIRS and commonly used imaging
examinations in the cognitive field (/5,44,45).

5. Combined application of fNIRS and other imaging
techniques in the cognitive domain

At present, numerous studies highlight the potential
benefits of integrating fNIRS and other imaging
techniques, allowing researchers to investigate brain
function from multiple perspectives and obtain a more
comprehensive understanding of neural processes.

The combination of EEG and fNIRS offers
advantages in terms of temporal and spatial resolution.
EEG provides high temporal resolution, capturing the
fast dynamics of neuronal electrical activity, while
fNIRS provides better spatial resolution, allowing for the
localization of cortical activation. Moreover, EEG and
fNIRS measure different aspects of brain activity, with
EEG reflecting neuronal electrical activity and fNIRS
capturing metabolic responses. This built-in validation
of identified brain activity enhances the reliability of
the results obtained from these two modalities (46). The
complementary nature of the measurements obtained
from EEG and fNIRS can provide a more comprehensive
understanding of brain activity and function, offering a
unique neural monitoring platform to investigate the NC
mechanism (47).

A study conducted by Cicalese ef al. (48) examined
the classification of subjects based on the degree of
dementia using an EEG-fNIRS hybrid model. The
results showed that when EEG and fNIRS were used

Table 1. The comparison of fNIRS with other neuroimaging techniques

Technology Advantages

Disadvantages

Indications Contraindications

fNIRS 1.Good temporal resolution
2.Good spatial resolution
3.Insensitive to motion artifacts
4.Good compatibility
5.Non-invasive

6.Portable and cost-effective

1.Restricted to cortical measurements

1.Care with severe scalp
injuries

1.Safe for all age groups
2.Cognitive and behavioral
studies

3.Real-time brain
monitoring

fMRI 1.Excellent spatial resolution 1.Limited temporal resolution
2.Whole-brain imaging 2.Sensitive to movement artifacts
3.Non-invasive 3.Expensive and non-portable
4. Limited compatibility
5.Relatively noisy
EEG 1.Excellent temporal resolution  1.Limited spatial resolution
2 Non-invasive 2.Prone to noise from muscle
3.Portable and cost-effective activity
3.Limited compatibility
4.Requires conductive scalp gel
PET 1.Good spatial resolution 1.Limited temporal resolution

2.High sensitivity for metabolic
activity

3.Target specific molecules
with tracers

2.Invasive
3.Limited compatibility
4. Expensive and non-portable

1.Functional brain mapping
2.Neurovascular coupling
studies

1.Rapid detection of brain
activity

1.Metabolic brain function
studies

1.Claustrophobia

2.Metal implants or devices
3.Severe kidney dysfunction
(due to contrast agents)

1.Severe scalp injuries
2.Hypersensitivity to
conductive gel

1.Pregnancy and children
2.Severe kidney dysfunction
3.Allergies to radiotracers

Abbreviation: fNIRS: functional near-infrared spectroscopy. fMRI: functional magnetic resonance imaging. EEG: electroencephalograms. PET:

positron emission tomography.

(57)
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independently, the accuracy was 65.52% and 58.62%,
respectively. However, when the EEG-fNIRS hybrid
model was employed, the accuracy increased to 79.31%,
demonstrating the enhanced performance achieved by
integrating the complementary characteristics of EEG
and fNIRS. These findings suggest that the hybrid EEG-
fNIRS system holds promise as a tool to enhance the
diagnostic and evaluation processes for diseases such
as AD. Cognitive deficits in AD have been linked to
the disruption of brain networks (49). Li (50) used the
fNIRS-EEG method to investigate the dynamic and local
changes in AD-related brain networks, demonstrating the
feasibility of this technique. This approach allows for the
examination of both hemodynamic and electrical aspects
of brain activity, providing valuable insights into the
pathophysiology of AD.

The combination of fMRI and fNIRS is one of the
most commonly used multimodal imaging approaches.
This is because fMRI equipment is generally not
suitable for conducting experiments with participants
in sitting or standing positions (5/). On the other hand,
fNIRS is applicable to a wide range of experimental
conditions and can accommodate participants in various
positions. Additionally, while fNIRS provides limited
whole-brain coverage, the high spatial resolution of
fMRI compensates for this limitation, resulting in a
complementary combination of the two techniques.

Some researchers have used fMRI and fNIRS to
verify the feasibility of combining multiple techniques.
Pereira (52) employed the fMRI-fNIRS multimodal
approach to examine the possibility of converting spatial
neuronal information from fMRI motion patterns into
fNIRS settings of HbO, and HbR concentrations. This
innovative technique aimed to enhance the understanding
of motor function by revealing detailed information
about neural activity using fNIRS measurements.

6. Application of fNIRS in the cognitive impairment
related to neurological and psychiatric diseases

6.1. Cognitive impairment associated with neurological
diseases

6.1.1. Alzheimer's disease

AD is the most prevalent neurodegenerative
disease globally and currently lacks a cure. Early
pharmacological intervention and regular physical
exercise can decelerate disease progression and enhance
patients' quality of life (53). MCI acts as a transitional
stage between normal aging and AD. It is important to
note that not all individuals with MCI will progress to
AD (54). MCI can serve as an early indicator of AD, and
early diagnosis is crucial for timely intervention to delay
the onset of dementia (55).

fNIRS has shown promise in this area and provided
insights into the functional alterations in the brain section
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associated with cognitive impairment. Ates suggests that
the neural network behind emotion enhanced memory
may involve interactions between frontal and subcortical
regions. So, Ates and his colleagues used fNIRS to
measure cortical activity during an emotional n-back task
in 20 AD patients and 20 healthy older adults of similar
age and sex. They found that only in positive emotional
words, AD patients have higher HbO, concentrations
than healthy controls, and the cortical activity of AD
patients with positive emotion words was hemispheric
and left side activity was higher (56). Katzorke et al.
selected 110 subjects from a cohort of 604 participants,
half each with MCI patients and half each with healthy
controls. Using fNIRS to measure hemodynamic
responses during a verbal fluency task (VFT), the
investigators found decreased hemodynamic responses in
the inferior frontotemporal cortex in the MCI group. The
hemodynamic response pattern during VFT can be used
as one of the bases for early detection of AD (57). These
studies show that AD or MCI patients with cognitive
decline have reduced cortical oxygenation during
cognitive tasks, which is consistent with the previous
argument (Figure 3).

Studies have shown that visuospatial deficits are
one of the first symptoms of AD and are associated
with lower activation of the parietal epithelial cortex as
assessed by functional imaging (58). Zeller et al. (59)
utilized fNIRS to investigate the activation of parietal
regions in patients with AD and healthy subjects during
visuospatial tasks. Interestingly, they found that although
healthy subjects exhibited significant parietal activation,
there was no difference in visuospatial performance
between the two groups. In a study by Haberstumpf ez a/
long-term participation in the Vogel Study was analyzed
in healthy older adults performing a clock-hand-
angle discrimination task (ADT) during visuospatial
processing. Using fNIRS, significant activation in the
parietal cortex was observed during visuospatial tasks,
and this activation showed a significant increase in
neuronal brain activity with increasing task difficulty
(60). Building upon these findings, Haberstumpf et al.
conducted a similar study on individuals with MCI (67)
the activation of the parietal cortex, observed in healthy
subjects, was significantly reduced in MCI patients.
These results suggest that deficits in visuospatial
processing in the parietal cortex may serve as a risk
factor for the progression of MCI or AD. Therefore,
measuring parietal cortex activation using fNIRS could
potentially be employed as a reliable marker for the early
detection and diagnosis of AD.

Cognitive function requires a high level of functional
interaction between network region. Functional
connectivity, which refers to the synchronized activity
between different brain regions, is thought to play a
crucial role in cognitive processes. Research suggests
that changes in functional connectivity may precede
alterations in the activation of specific brain regions
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Figure 3. Application of fNIRS in cognitive impairment associated
with central nervous system diseases. Illustration of application
of fNIRS in the cognitive impairment related to neurological and
psychiatric diseases. Left: neurological diseases (shown in blue),
including Alzheimer's disease (AD), stroke, Parkinson's disease (PD),
traumatic brain injury (TBI) and multiple sclerosis (MS). Using
fNIRS, decreased HbO, and impaired brain functional connectivity
can be detected in some regions of the cerebral cortex in AD and
stroke patients, activation of the non-motor prefrontal cortex (PFC)
can be observed in PD patients to compensate for motor function, and
lower but more extensive activation of the PFC can be detected in TBI
patients. In patients with MS, fNIRS can be used as a tool to assess
cortical hemodynamics. Right: psychiatric diseases (shown in pink),
including depression, bipolar disorder (BD), schizophrenia (SCZ),
autism spectrum disorders (ASD) and attention deficit hyperactivity
disorder (ADHD). Using fNIRS, decreased cortical activation and
impaired brain functional connectivity can be detected in patients with
depression, decreased and delayed cortical activation can be observed
in BD patients, reduced but more widespread cortical activation in SCZ
patients, or delayed over-activation, can be detected, damaged brain
functional connectivity can be observed in ASD patients, and decreased
cortical activation can be detected in ADHD patients.

(62). Tang and Chan (54) used fNIRS to analyze the
functional connectivity of mild AD, MCI, and normal
aging and found that the brain network of normal aging
individuals exhibited higher regularity compared to AD
patients, indicating that fNIRS can be a feasible tool for
distinguishing AD from normal aging based on functional
connectivity patterns. Nguyen et al. (63) used fNIRS
to detect brain functional connectivity in cognitively
normal older adults and patients with MCI, and found
that in the VFT task, the inter-hemispheric connectivity
in the healthy control group was significantly higher
than the intra-hemispheric connectivity. It can be used as
an effective indicator to distinguish cognitively normal
elderly from MCI patients. In addition, left hemisphere
connectivity was significantly reduced in MCI patients
during the VFT task, and these findings demonstrate the
potential of fNIRS to study brain functional connectivity
in neurodegenerative diseases. Chan et al. (64) also

(59)

proposed that brain functional connectivity analysis based
on fNIRS can be used as an effective set of features for
the diagnosis of AD, and AD patients have loss of brain
functional connectivity and non-significant laterality.
Moreover, connectivity disruption and frontal lobe
oxygenation changes are more severe in AD patients than
in patients with mild cognitive impairment (Figure 3) (11).

6.1.2. Stroke

Cognitive impairment is a common consequence of
stroke, and fNIRS has emerged as a valuable tool for
assessing brain activity and monitoring changes during
cognitive tasks in patients with post-stroke cognitive
impairment (PSCI) (65,66). Kong et al. (65) specifically
focused on evaluating the functional connectivity of
relevant cortex during memory tasks using fNIRS. They
found that a decreased level of functional connectivity
may serve as a marker of PSCI (Figure 3). Zou et al.
employed fNIRS to study the differences in functional
connectivity of brain networks between patients with
PSCI and healthy controls. They discovered that the
functional connectivity of brain networks in PSCI
patients was significantly lower compared to healthy
controls. However, there was no significant difference in
functional connectivity between PSCI patients and stroke
patients without PSCI (67).

fNIRS is frequently used to assess the effectiveness
of cognitive rehabilitation in stroke patients. Monitoring
changes in brain activity during rehabilitation
training using fNIRS is crucial for understanding the
compensatory changes that underlie functional recovery
after brain injury, ultimately improving the outcomes
of rehabilitation interventions (68). Yang et al. (69)
used fNIRS to evaluate the effect of transcranial direct
current stimulation (tDCS) on the rehabilitation of
cognitive impairment in stroke patients. After tDCS
treatment, fNIRS measured increased activation of the
left superior temporal cortex and improved functional
connectivity between the cerebral hemispheres in stroke
patients. Huo et al. (70) used fNIRS to evaluate the
changes in effective connectivity within the cortical
network induced by median nerve electrical stimulation
(MNES) in stroke patients, and found that the effective
connectivity between bilateral prefrontal PFC and left
occipital lobe (LOL) in stroke patients in the MNES state
was significantly higher than that in the resting state.
Zhang et al. (71) used fNIRS as one of the indicators to
evaluate the effect of intermittent theta burst stimulation
(iTBS) combined with cognitive training on the
treatment of PSCI. The left dorsolateral prefrontal cortex
(DLPFC), prefrontal polar cortex, and left Broca's region
were activated. These studies collectively suggest that
fNIRS can serve as an effective tool for monitoring and
evaluating brain activity in stroke patients undergoing
cognitive rehabilitation. By providing objective
measures of brain function, fNIRS can assist clinicians in
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formulating and optimizing individualized rehabilitation
treatment programs, as well as accurately assessing
rehabilitation efficacy and prognosis.

6.1.3. Parkinson's Disease

PD is a neurodegenerative disorder characterized by
motor symptoms and various non-motor symptoms,
including cognitive decline, particularly in executive
function (72). Stuart et al. used fNIRS to measure PFC
activity during tasks to distinguish between PD patients
and healthy individuals (73). It has been shown that
executive dysfunction leads to freezing of gait (FOQ),
which is a common episodic disorder in PD patients
(74). Previous studies have shown that PD patients often
compensate for impaired motor function by activating
the PFC (75). Currently, in PD, fNIRS is mainly used
to investigate changes in cortical activity during gait
and postural stability tasks (76). Maidan et al. (77) used
fNIRS to measure HbO, levels in Brodmann area 10
before and during FOG revealing a direct association
between FOG and dysfunction in the frontal lobe.
However, there are exceptions to the compensatory
activation pattern. Bonilauri ef al. (78) used fNIRS to
evaluate PD at different stages. They divided 39 PD
patients into early PD and middle PD groups based on
the Hoehn-Yahr (HY) scale and employed a whole-head
fNIRS system with 102 measurement channels to monitor
brain activity. The group-level activation map indicated
that the middle PD group exhibited higher activation
in the frontal regions compared to the early PD group,
while the opposite pattern was observed in the motor and
occipital regions. This suggests that the PFC in non-motor
regions may provide a compensatory mechanism for PD-
related movement disorders (Figure 3).

6.1.4. Traumatic brain injury

TBI can result in long-term neurobehavioral and
cognitive impairment (79). Executive function deficits,
which involve the PFC, are commonly observed in
patients with neurocognitive impairment following
TBI (80). Chang et al. recruited 37 patients with
neurocognitive impairment after TBI and 60 healthy
controls to measure HbO, in the PFC region during
the Stroop and n-back tasks using a 22-channel fNIRS
device. The results revealed that TBI patients exhibited
lower but more widespread brain activation during
the 2-back and Stroop color word congruency tasks
compared to healthy controls (Figure 3) (87). Plenger
et al. used fNIRS to evaluate neural changes in TBI
patients during the Stroop task. Compared with the
healthy group, the patient group had a significant
increase in HbO, in the bilateral frontal lobe and greater
neural activity in the frontal lobe (82). These findings
indicate the potential of fNIRS in identifying frontal
inefficiency in TBI patients.

(60)

6.1.5. Multiple sclerosis

MS is a degenerative disease that affects the central
nervous system, characterized by inflammation,
demyelination, and axonal damage (83), and cognitive
impairment and motor impairment are common in
patients with MS (84). Stojanovic-Radic et al. (85) used
fNIRS to examine differences in neural activation in the
orbitofrontal brain regions during a working memory
(WM) task between individuals with MS and healthy
controls. The results demonstrated that the MS group
exhibited elevated HbO, concentrations and increased
brain activation in the left superior frontal gyrus at lower
levels of task difficulty (1-back), but decreased activation
at higher levels of task difficulty (2-back and 3-back)
compared to healthy controls (Figure 3). This study was
the first to utilize fNIRS to investigate brain activation
during a cognitive task in individuals with MS.

The application of fNIRS in cognitive impairment in
neurological diseases are reported in Table 2.

6.2. Cognitive impairment associated with Psychiatric
diseases

Cognitive impairment is a common characteristic of
various mental disorders, including depression. fNIRS
has emerged as a valuable tool in psychiatric research,
allowing for the measurement of cortical dysfunction
during cognitive tasks. It has been utilized in several
mental disorders such as SCZ, Major depressive disorder
(MDD), and bipolar disorder (BD) The application of
fNIRS in cognitive impairment in psychiatric diseases
are summarized in Table 3.

6.2.1. Depression

Depression is often associated with cognitive impairment
(86), and executive function, which relies on the PFC,
is one aspect of cognition that is affected. The PFC
is involved in various high-level cognitive functions,
including executive function, WM, and language
processing (87).

Kondo et al. (88) used fNIRS to assess changes
in prefrontal and temporal lobe HbO, concentrations
during pleasant and unpleasant image recall tasks in
patients with MDD and healthy controls. It was found
that HbO, in the bilateral frontal region of MDD group
was significantly lower than that of the control group
during the unpleasant state. Downey et al. (89) used
fNIRS to measure frontal lobe hemodynamic responses
during category VFT and WM n-back tasks in depressed
patients and found that bilateral frontal lobe hemoglobin
responses were lower. Liu (90) used fNIRS to monitor
the concentration of HbO, in the brain of adolescents
with depression and healthy controls. The study revealed
that depressed adolescents exhibited significantly lower
cortical activation of hemodynamic responses in the PFC
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compared to healthy controls. The mean inter-channel
connectivity strength was also found to be higher in
the healthy control group than in the depression group.
These findings suggest that adolescents with depression
exhibit abnormal brain activation patterns and reduced
task-related functional connectivity compared to their
healthy counterparts. In Ishii's study, MDD patients
showed significantly lower activation in PFC areas
and inferior parietal areas, especially in the left, when
performing a word-making task than controls (97). These
studies suggest that the brains of depressed patients
exhibit abnormal activation patterns compared to healthy
controls, and fNIRS may be a useful tool for assessing
psychophysiological indicators of depressed patients
and distinguishing depressed patients from normal
individuals (Figure 3).

6.2.2. Bipolar disorder

BD, characterized by the presence of both manic and
depressive episodes, with depressive episodes being
a typical symptom. Similar to depression, the PFC
plays a significant role in the pathophysiology of BD.
Kameyama (92) used fNIRS to compare changes in
HbO, concentration in the frontal lobe during cognitive
and motor tasks in BD, MDD, and healthy controls.
The study found that individuals with BD exhibited
delayed onset activation in the frontal lobe (Figure 3),
while those with MDD showed reduced activation in
the frontal lobe. These differences in frontal activation
patterns suggest that fNIRS may be a reliable tool for
differentiating between BD and MDD. Nishimura (93)
compared prefrontal hemodynamic responses during
cognitive tasks between the hypomanic and depressive
states in individuals with BD. They used fNIRS to assess
prefrontal function during VFT in hypomanic, depressed,
and healthy control groups. The study revealed that
VFT performance did not differ significantly between
the hypomanic, depressive, and healthy control groups.
However, the activation rate in the PFC was significantly
lower in individuals with BD compared to the healthy
control group (Figure 3). The left DLPFC exhibits
significantly greater hemodynamic changes in individuals
with BD during hypomanic episodes compared to
those with depression. Furthermore, the severity of
hypomanic symptoms was positively correlated with
activation in the left DLPFC and frontopolar cortex in
BD patients. Follow-up measurements in hypomanic
patients showed decreased prefrontal activation after
the resolution of hypomanic symptoms. These findings
suggest that there are distinct differences in prefrontal
hemodynamics corresponding to manic and depressive
states in individuals with BD, and fNIRS may serve as a
valuable tool for objectively assessing the state-dependent
characteristics of prefrontal hemodynamics in BD.

6.2.3. Schizophrenia

(61)

Cognitive impairment is a core feature of SCZ and is
often observed years before the onset of overt psychotic
symptoms (94). Koike (95) used multi-channel fNIRS
to measure hemodynamic changes during n-back WM
tasks with different cognitive loads in patients with
SCZ and healthy controls and found that the activation
of prefrontal activity was reduced but more extensive
in SCZ patients (Figure 3). Noda (96) used fNIRS to
focus on the changes in HbO, levels in the prefrontal and
temporal lobes in the late stage of the task and found an
abnormal re-increase of HbO, levels. Kumar (97) used
fNIRS to examine hemodynamic activity during WM
tasks in SCZ. The results found delayed but compensatory
hyperactivation in the right frontopolar cortex of the SCZ
(Figure 3), which, the authors speculate, may underlie the
WM deficit in the SCZ. According to the above studies,
Hemodynamic changes in WM of patients with chronic
SCZ detected using fNIRS may be a potential biomarker.

As a novel neurophysiological approach, fNIRS is
increasingly being used in the study of SCZ and frontal
lobe dysfunction. To date, several studies have employed
fNIRS to assess hemodynamic changes in the frontal
lobe in various contexts, demonstrating that distinct
hemodynamic response patterns may serve as potential
imaging biomarkers in individuals with SCZ and fNIRS
may become an effective clinical tool for evaluating this
population.

6.2.4. Autism spectrum disorder/ attention deficit
hyperactivity disorder

ASD is characterized by impaired social communication
accompanied by stereotyped behaviors and limited
interests (DSM-5). Executive dysfunction is partly
responsible for these symptoms (98). A special feature
of fNIRS for this population is the ability to study
neural development from an early age (99), leading to a
better understanding of the neural mechanisms of ASD.
Unlike fMRI, which requires a closed environment with
loud noise and patient immobilization, fNIRS is quiet
and portable, making it more suitable for individuals
with ASD who may have difficulty tolerating the fMRI
environment (/00). However, some individuals with
ASD may also resist wearing near-infrared caps, limiting
the feasibility of traditional fNIRS approaches (/01),
Therefore, the development of remote and non-contact
near-infrared systems is a future direction in this field.
Chan et al. (102) used fNIRS to measure prefrontal
hemodynamic data in individuals with ASD and typically
developing (TD) individuals. The study revealed
significantly lower functional connectivity in the PFC of
individuals with ASD compared to TD individuals. Han
et al. (103) used NIRS to investigate the impact of WM
load on functional connectivity in the PFC of individuals
with ASD. The findings revealed that individuals with
high-functioning ASD exhibited WM impairment that
was accompanied by load-dependent changes in intra-
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5<% CEZEm 2 the neurophysiological underpinnings of depressi
s o $2288 % phy gical underpinnings of depression
-g é s EgE¢ :g (107). The diagnosis of ADHD is predominantly based
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; - g2 Sz %) on clinical observation and behavioral assessment
=B sEETE les, which can be subjective (108). To address thi
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; § = = S qé = % g% for ADHD diagnosis. Crippa et al. demonstrated
g | E8 Z. ég 5 2 E significant differences in brain activation levels between
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g I~ < s -é’ £2E children with ADHD and healthy controls, achieving a
2, e § = § i:&; diagnostic accuracy exceeding 80% (109). Furthermore,
Q -
PR é § g g g22 the capacity of fNIRS to provide real-time monitoring of
=3 | < 2Ec 2825 £ .
Slz g SEERE 5 cerebral hemodynamics offers a valuable complement
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Table 3. Summary of fNIRS applications on Psychiatric diseases (continued)

Evidence

Results

Activation Task Brain Region

Research object

Reference

The right prefrontal hypoactivation assessed by fNIRS

0.741), Ch 6 (d

0.755), and Ch 10 (d = 1.046), while ADHD showed no significant activation would serve as a potentially effective biomarker for

HC showed significant [oxy-Hb] increases at Ch 5 (d

Prefrontal

A go/no-go task

ADHD: n =30

Monden (105)

HC:n=30

classifying ADHD children at the individual level.

in these channels.

0.005) ASD individuals showed significantly lower prefrontal

0.006).

In ASD, FC was lower in the right lateral PFC during acquisition (p

and in the bilateral PFC during application (right: p

Prefrontal

The WCST

ASD: n=29

M. M. Y. Chan

(102)

FC than typical developing individuals during WCST.

0.006; left: p =

HC:n=26

A disruption of functional neural connections that

In ASD, a trend toward significance in right medial PFC connectivity was
observed between 0-back and 1-back (p = 0.030, uncorrected), with no

Prefrontal
significant effects on the left.

The n-back task

ASD: n=22

Han (103)

support different cognitive processes may underlie

poor performance in WM tasks in ASD.

HC:n=24

Abbreviation: MDD: major depressive disorder. HC: healthy control. [oxy-Hb]: oxygenated hemoglobin. FDR: false discovery rate. VFT: verbal fluency task. PFC: prefrontal cortex. BD: bipolar disorder. DBD: depressed bipolar

disorder. HBD: hypomanic bipolar disorder. DLPFC: dorsolateral prefrontal cortex. VLPFC: ventrolateral prefrontal cortex. SCZ: schizophrenia. WM: working memory. ADHD: attention deficit hyperactivity disorder. ASD:

autism spectrum disorder. WCST: Wisconsin Card Sorting Task. FC: functional connectivity.
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to traditional scale-based assessments in rehabilitation
contexts.

Beyond its diagnostic applications, fNIRS is also
widely used in evaluating the efficacy of treatments
for cognitive impairment, often in combination with
various neural modulation techniques such as tDCS (69)
and MNES (70). By enabling real-time and repeated
dynamic monitoring of brain function, fNIRS allows for
the observation of individual cortical responses, thereby
facilitating the determination of optimal stimulation
parameters, including intensity, frequency, and duration.
This approach is crucial for evaluating rehabilitation
outcomes and optimizing intervention strategies.

8. Conclusions

Cognition fundamentally relies on the normal
functioning of the cerebral cortex. Any factors that
disrupt the structure or function of the cerebral cortex
can lead to cognitive impairment, with common
causes including neurodegenerative and psychiatric
diseases. Different forms of cognitive impairment are
often interconnected, such that deficits in one domain
may give rise to abnormalities in others, making the
diagnosis and treatment of cognitive impairment
particularly challenging (//0). fNIRS, as a non-invasive
and portable neuroimaging modality, is particularly
well-suited for studying hemodynamic responses in
the cortex during cognitive tasks in populations such
as children, older adults, and individuals with unique
needs. Additionally, fNIRS holds significant promise
for advancing cognitive neuroscience in real-world
contexts. Recent advancements in fNIRS research have
begun to elucidate the complex relationships between
cognitive processes—such as learning, memory,
and language—and regional CBF and metabolism.
Beyond its applications in cognitive research, fNIRS
has shown potential in investigating brain functional
changes induced by physical activity. The application
of fNIRS in rehabilitation is particularly noteworthy for
its ability to provide precise imaging-based evidence
to guide intervention planning. A key to improving
rehabilitation outcomes lies in the development of
targeted clinical interventions based on brain function
remodeling. In future clinical practice, the development
of comprehensive brain function assessment frameworks
based on fNIRS may allow real-time monitoring of
cortical responses induced by rehabilitation, thereby
providing insights into neural plasticity. Advanced
analysis of fNIRS data could not only deepen our
understanding of the mechanisms underlying this
technology but also inform the design of personalized
rehabilitation plans, offering valuable perspectives on
treatment efficacy and prognosis.

However, its current limitation in penetrating deep
brain structures, restricts its full potential. fNIRS relies
on light penetration and reflection, typically reaching
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a depth of 1.5 to 2cm. Consequently, it is unable to
capture comprehensive structural images or anatomical
information (/2). Its primary utility lies in studying
metabolic activities in superficial areas, rather than deep
structures like the hippocampus or amygdala (/71).
To unlock the full capabilities of fNIRS, it is crucial
to overcome this limitation and extend its application
to explore deep brain function. Consequently, the
integration of fNIRS with other imaging modalities is an
inevitable trend in its development. Multimodal imaging
approaches offer a more comprehensive and systematic
assessment of brain function. Motion artifacts affect
most imaging techniques, including fNIRS. However,
fNIRS exhibits relatively higher tolerance to motion
artifacts compared to other neuroimaging methods,
making it suitable for use during physical activities (37).
To address motion artifacts in fNIRS studies, researchers
have devised various methods to minimize signals
originating from non-brain tissue activities. Among these
methods, short-channel subtraction has demonstrated
notable efficacy in reducing extracerebral responses and
is often regarded as the "gold standard" (67). Despite
its application across multiple research domains, the
absence of standardized protocols for data processing
and analysis in fNIRS studies significantly hinders cross-
study comparisons (/5,42).

A considerable body of research on fNIRS has
primarily focused on the blood flow and metabolism
within brain regions associated with various types of
cognitive impairment. However, the understanding
of the brain network mechanisms underlying fNIRS
remains limited, with divergent theoretical perspectives,
particularly regarding brain network connectivity and
the synergistic interactions between brain regions.
Consequently, there is substantial potential for further
exploration and refinement of fNIRS in this context. This
review provides an overview of the application of fNIRS
in cognitive impairment associated with various diseases
and highlights its potential in the early detection and
diagnosis of AD and MCI. By measuring oxygenation
levels in the frontal, temporal, and parietal lobes during
cognitive tasks and comprehensively analyzing the brain
functional connectivity, fNIRS can provide valuable
insights into the study of cognitive impairment related
to central nervous system diseases. This review aims
to stimulate further research in the field of fNIRS,
facilitating the exploration of neural mechanisms
underlying cognitive activity. It is anticipated that with
ongoing technological advancements, fNIRS will evolve
into a more user-friendly research tool with expanded
clinical applications.
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