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1. Introduction

With the advancement of sensor and deep learning 
technology, gesture recognition based on physiological 
signals has been widely applied in human-computer 
interaction. It finds applications in various areas, 
such as sign language recognition, robot control, 
virtual reality, and prosthetic control (1-4). Utilizing 
physiological signals to capture gestures is a more 
natural and immersive interaction, offering advantages 
such as low latency and computational requirements. 
Among physiological signals, surface electromyography 
(sEMG) signals are particularly suitable for capturing 
muscle activities. By placing electrodes on the 
skin's surface in the region of interest, muscle action 
potentials can be measured without causing harm to the 
human body. Consequently, acquiring and recognizing 
gestures from sEMG signals have become a hot 
research topic in related fields (5).
 In previous research, we proposed a long-short-

term feature fusion network called LST-EMG-Net 
for sEMG gesture recognition (6). The network is 
entirely designed based on attention mechanisms. LST-
EMG-Net extracts long-term and short-term features 
separately and employs a feature cross-attention 
module to fuse them, addressing the mismatch between 
the extracted feature information and the information 
required for gesture recognition. On the DB2 E2, 
Ninapro DB5 E3, and CapgMyo DB-C datasets, LST-
EMG-Net achieved accuracies of 81.47%, 88.24%, and 
98.80%, respectively. Compared to the state-of-the-art 
methods in the literature, it improved the accuracy by 
2.70%, 4.49%, and 0.42% for the respective datasets, 
enhancing the accuracy and stability of gesture 
recognition across various classes. However, the 
challenge of a heavy user data collection burden still 
exists:
 The datasets used by traditional gesture recognition 
models such as LST-EMG-Net are obtained under ideal 
conditions, where each participant has sufficient data 
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SUMMARY: In human-computer interaction, gesture recognition based on physiological signals offers advantages 
such as a more natural and fast interaction mode and less constrained by the environment than visual-based. Surface 
electromyography-based gesture recognition has significantly progressed. However, since individuals have physical 
differences, researchers must collect data multiple times from each user to train the deep learning model. This data 
acquisition process can be particularly burdensome for non-healthy users. Researchers are currently exploring 
transfer learning and data augmentation techniques to enhance the accuracy of small-sample gesture recognition 
models. However, challenges persist, such as negative transfer and limited diversity in training samples, leading to 
suboptimal recognition performance. Therefore, We introduce motion information into sEMG-based recognition and 
propose a multimodal optimal matching and augmentation method for small sample gesture recognition, achieving 
efficient gesture recognition with only one acquisition per gesture. Firstly, this method utilizes the optimal matching 
signal selection module to select the most similar signals from the existing data to the new user as the training set, 
reducing inter-domain differences. Secondly, the similarity calculation augmentation module enhances the diversity 
of the training set. Finally, the Modal-type embedding enhances the information interaction between each mode 
signal. We evaluated the effectiveness on Self-collected Stroke Patient, the Ninapro DB1 dataset and the Ninapro 
DB5 dataset and achieved accuracies of 93.69%, 91.65% and 98.56%, respectively. These results demonstrate that 
the method achieved performance comparable to traditional recognition models while significantly reducing the 
collected data.
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to train individual recognition models. For example, 
in the Ninapro public dataset (7-10), each sub-dataset 
gesture typically requires patients to repeat it 6 to 
10 times. Each participant must perform continuous 
arm movements for approximately half an hour when 
collecting over a dozen gestures. Prolonged data 
collection leads to muscle fatigue in the participants and 
affects the data quality (11). This data collection burden, 
particularly in stroke or disabled patients, imposes 
significant physical and time costs on the patients. 
Moreover, there exist differences among participants 
in terms of height, weight, body mass index (BMI), 
and the amount of fat in the superficial muscles. Even 
when performing the same gesture, individuals exhibit 
significant variations in signal distribution (12). As a 
result, personalized small-sample signal-based models 
and models trained on signals from other individuals 
struggle to achieve the desired recognition accuracy.
 Related researchers generally propose small-sample 
gesture recognition methods in terms of either transfer 
learning (TL) or signal augmentation to reduce the user's 
acquisition burden.
 Transfer learning Small-sample gesture recognition 
methods typically use existing user data as the source 
domain and the new user data as the target domain. 
Researchers design transfer strategies from the 
perspectives of data, features, or models to effectively 
recognize the target domain (13-20).
 Kanoga et al. (13) proposed a transfer framework 
that projects the source domain data onto the target 
domain data distribution through linear projection. Azab 
et al. (14) introduced a data transfer method based on 
Kullback-Leibler (K-L) divergence measurement. Wang 
et al. (15)presented a multi-source integration transfer 
learning (MSITL) approach to explore cross-user gesture 
recognition. It involves training recognition models for 
each source domain (user) and fine-tuning them using 
the target domain (new user) data evaluation scores. 
Colli Alfaro et al. (16) introduced IMU data to the 
existing EMG signals of subjects. Multiple pre-trained 
prediction models are created for each source data 
and fine-tuned using an adaptive least squares support 
vector machine (LS-SVM) to select the model with the 
highest accuracy. Sheng et al. (17) proposed a general 
framework called the common spatial-spectral analysis 
(CSSA) framework. Campbell et al. (18) introduced 
an Adaptive Domain Adversarial Neural Network 
(ADANN), which freezes certain layers and fine-tunes 
others when adding new subjects.  Tsinganos et al. (19) 
proposed a new convolutional neural network (TSNet) 
that combines both temporal and spatial features, as 
well as an improved version of AtzoriNet denoted as 
AtzoriNet*. They trained the network models using data 
from multiple participants (source domain) and then 
fine-tuned the model weights using data from the target 
domain to recognize gestures performed by new users. 
Yu et al. (20) employed a similar approach, utilizing the 

source domain data to train an improved CNN model 
and fine-tuning the fully connected layers with target 
domain data for recognizing gestures from new subjects. 
We summarize the relevant studies on transfer learning 
for small sample recognition from the perspectives of 
methodology, datasets, number of subjects, types of 
gestures, signal types, and accuracy, as shown in Table 1.
 In summary, applying transfer learning to small 
sample gesture recognition can somewhat improve 
recognition performance. However, due to the 
inherent differences in the physical characteristics of 
physiological signals such as sEMG signals among 
different individuals and the influence of factors such 
as environmental noise and body posture, there are 
significant differences in the feature distributions 
of signals between the source and target domains. 
Consequently, knowledge learned in the source domain 
may not be applicable to the target domain, resulting in 
a performance decline when the knowledge or model 
learned from the source domain data is applied to 
the target domain data. This can lead to the problem 
of negative transfer (21), which affects the model's 
recognition performance.
 In addition to the methods mentioned above, in tasks 
such as emotion recognition (22-25), researchers have 
employed multimodal data fusion methods to combine 
data from different types of sensors. The method 
aims to obtain comprehensive, accurate, and reliable 
physiological information, thereby improving the 
recognition accuracy and generalization of the models. 
Although the application of multimodal data fusion 
methods in small-sample gesture recognition is currently 
limited, this approach provides valuable insights. It 
allows us to complement the general physiological 
information of gesture movements, reduce inter-user 
domain differences, and enhance the accuracy of small-
sample gesture recognition.
 Based on the above problems and research status, in 
order to maximize the accuracy of small-sample gesture 
recognition we propose a multimodal optimal matching 
and augmentation method for Small sample gesture 
recognition. The method can effectively address the 
negative transfer problem and enhance the diversity of 
signals in the training set. With only one data collection 
for each gesture, this method achieves comparable 
accuracy to traditional gesture recognition models 
based on individual data. The main contributions of 
this paper are as follows: In response to the negative 
transfer problem caused by the significant domain 
differences between the source and target domains, we 
analyze the characteristics of signals from different 
individuals for the same gesture. We propose an optimal 
matching signal selection module that calculates the 
similarity between existing and new user signals from a 
time-frequency perspective. This module selects high-
similarity signals to form the optimal matching signal 
training set, enhancing the similarity between the source 
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and target domains and avoiding the occurrence of 
negative transfer phenomena.

2. Materials and Method

The overall framework of the proposed multimodal 
optimal matching and augmentation method is depicted 
in Figure 1. The framework consists of three main 
components: the optimal matching signal selection 
module, the similarity calculation augmentation module, 
and the multimodal LST-EMG-Net.
 Optimal matching signal selection module: This 
module calculates the similarity between new user-
calibrated gestures signals and the database's signals. 
After adaptive selection based on multimodal signals, 
it outputs the optimal matching signals as part of the 
training set.
 Signal  augmentation module :  This  module 
utilizes Variational Autoencoder (VAE) to expand 
the multimodal signal samples of new user calibrated 
gestures by using a reconstruction loss based on time-
domain similarity calculation to compute the difference 
between the generated samples and the original samples 
to optimize the generation of samples. The enhanced 
samples are then outputted as another part of the training 
set.
 Multimodal LST-EMG-Net: This network inputs the 
training set consisting of the optimal matching signal 
and augmentation samples. The sEMG and motion 
signals in each sample are separated with Modal-type 
embedding and fed into the LST-EMG-Net to extract 
features for gesture recognition.
 The application process of the multimodal optimal 
matching and augmentation gesture recognition method 
consists of two stages:
 Model training stage: The stage involves organizing 
the multimodal signals of existing users into a 
multimodal signal database based on the number of 
gesture repetitions. A single repetition of the gesture 
signal from a new user is collected as the calibration 
gesture signal. Once the data collection is complete, the 
new user's calibration gesture dataset and the multimodal 
signal database are inputted into the optimal matching 
signal screening module and the signal enhancement 
module based on signal similarity calculation. The 
obtained training set is then inputted into the Multimodal 
LST-EMG-Net for training, constructing a gesture 
recognition model.
 Online gesture recognition stage: The user wears 
the collection device to capture real-time multimodal 
signals. These signals are then input into the trained 
Multimodal LST-EMG-Net to obtain the gesture 
category.

2.1. Multimodal Datasets

We evaluate our small-sample gesture recognition using 
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the self-collected stroke patient dataset, the public 
dataset Ninapro DB1 and the public dataset Ninapro 
DB5.
 Self-collected Stroke Patient Dataset: This dataset 
was obtained from 6 stroke patients (5 males, 1 female, 
aged 57–68 years) at the Beijing rehabilitation hospital. 
Under the guidance of professional rehabilitation 
physicians, the patients used an MYO armband (as 
shown in Figure 2) to collect multimodal signals of 
7 commonly used hand gestures on their unaffected 
side, which are beneficial for muscle recovery in 
daily activities. Each hand gesture was recorded six 
times, with a duration of 5 seconds per repetition 
and a 3-second rest period. A 30-second rest interval 
was provided between consecutive hand gestures. 
Before data collection, participants received detailed 
explanations about the experiment, and their informed 
consent was obtained. The study adhered to the 
principles of the Helsinki Declaration and obtained 
ethical approval from the ethics committee (This work 
involved human subjects in its research. Approval of 
all ethical and experimental procedures and protocols 
was granted by the Ethics Committee of Beijing 
Rehabilitation Hospital Affiliated with Capital Medical 
University No. 2022bkky-048).
 Ninapro DB1 Dataset: We selected Ninapro DB1 
Exercise C's 7 dynamic gestures (as shown in Figure 
3(b)) that are beneficial for muscle recovery training. 
The DB1 dataset was collected from 27 participants 
using ten electrodes (Otto Bock MyoBock 13E200) 
and a data glove, capturing 10 channels of sEMG 
signals and 22 channels of hand and finger joint motion 
information. The sampling rate for each electrode 
was 100Hz. In Ninapro DB1 Exercise C, each hand 
gesture was repeated 10 times, with a 5-second duration 
for each active signal collection and a 3-second rest 
interval between each collection.

 Ninapro DB5 Dataset: We selected Ninapro DB5 
Exercise C's 7 dynamic gestures (as shown in Figure 
3(c)) which differ from those selected in Ninapro DB1 
Exercise Cg. The DB5 dataset was collected from 10 
healthy participants using two Myo armbands (Thalmic 
Labs Myo) and a data glove, capturing 16 channels 
of sEMG signals and 22 channels of hand and finger 
joint motion information. The sampling rate for each 
electrode was 200Hz. In Ninapro DB5 Exercise C, each 
hand gesture was repeated six times, with a 5-second 
duration for each active signal collection and a 3-second 
rest interval between each collection.
 In each dataset experiment, for the sEMG signals, 
a fourth-order Butterworth bandpass filter (20 Hz–500 
Hz) was first applied to remove motion artifacts 
and high-frequency noise, preserving useful motion 
information. Subsequently, the sEMG signals were 
standardized using a min-max normalization algorithm. 
For motion signals, the min-max normalization method 
was similarly used to map the data to the range of 0–1, 

Figure 1. Overall framework of multimodal optimal matching and augmentation method.

Figure 2. MYO ring acquisition signal schematic. The 7 hand 
gestures include fist grip, holding a cellphone, palm-to-palm exercise 
(cupping), cylindrical grip (holding a water cup), finger opposition 
exercise (thumb and index finger gripping a pen), single finger 
extension (extending index finger to touch the screen), and lateral 
thumb pinch (pinching a key, etc.) (as shown in Figure 3(a)). The 
multimodal signals include 8-channel sEMG signal,3-channel arm 
acceleration signal,3-channel angular velocity signal,4-channel 
quaternion signal. Acceleration, angular velocity, and quaternion are 
inertial measurement units (IMU).
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facilitating subsequent processing.

2.2. Optimal matching signal selection module

In gesture recognition tasks, when using existing signals 
to recognize new user signals in the target domain, it is 
important to select training data from existing signals 
similar to the target domain. This enables knowledge 
transfer learning. However, determining the similarity 
between signals directly through observation can be 
challenging. When two individuals have different muscle 
activity patterns, their sEMG and other physiological 
signals often differ significantly. In such cases, selecting 
inappropriate source domain signals can lead to negative 
transfer, resulting in a decline in the performance of the 
recognition model.
 Therefore, we propose an optimal matching signal 

selection module to select highly similar signals to the 
target domain, enabling better transfer learning between 
users. The optimal matching signal selection module 
consists of signal similarity calculation and multimodal 
signal adaptation selection, as shown in Figure 4. 
Specifically, this method first constructs a multimodal 
signal database, "user1, user2, ..., user n," based on 
existing user data. Then, the calibration gestures of the 
new user obtained are compared with the signals in 
the database using the signal similarity calculation part 
to calculate the similarity of each modality. Finally, 
multimodal signal adaptation selection combines highly 
similar modal data to form the optimally matched 
signals, creating a new user training set. As shown in 
Figure 4.
 Signal Similarity Calculation: Signal similarity 
assessment typically involves describing the differences 

Figure 3. Types of gestures in this paper: (a) 7 gestures in the self-harvested stroke patient; (b) 7 dynamic gestures in the Ninapro DB1 Exercise C. 
(c) 7 dynamic gestures in the Ninapro DB5 Exercise C.

Figure 4. Optimal matching signal selection module.
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in shape, spectrum, amplitude, and other features 
between two signals. Traditional methods mainly focus 
on time-domain calculations (26), but this approach has 
some limitations. Firstly, it lacks sufficient consideration 
of the differences in signal spectrum features. Secondly, 
traditional similarity measurements often use Euclidean 
distance or Pearson correlation coefficient, which 
may overlook some important features. Additionally, 
traditional methods cannot effectively compute the 
similarity between signals of inconsistent lengths. 
To overcome these issues, this paper proposes a new 
method for signal similarity calculation. This method 
comprehensively and accurately describes the similarity 
between two signals. Specifically, we consider the 
similarity between gesture single-cycle signals from 
both time and frequency domains to comprehensively 
evaluate their shape, spectrum, and other features. 
Figure 5 illustrates the detailed similarity calculation 
process.
 Firstly,  in terms of t ime-domain similarity 
calculation, this paper adopts the Dynamic Time 
Warping (DTW) algorithm (27) to compute the 
similarity dDTW between two-time series. The time-
domain similarity calculation dDTW between two-time 
series x = {x1,x2,x3,…,xn} and y = {y1,y2,y3,…,ym} is 
calculated as shown in Equation (1):

 Here, γ represents the smoothing parameter used 
to select the smoothness of the path, in this study, the 
default value of γ is set to 1. γ = 1 indicates a moderate 
strength of the smoothing factor, which makes the path 
selection of DTW more focused on the optimal path 
while still allowing a certain degree of suboptimal 
paths to contribute to the weight calculation, and Am,n 
represents the set of alignment matrices, indicating 
all possible paths that can be selected. ∆(x,y) is the 
cost matrix composed of distance values between 
corresponding points of the two time series. This 
method effectively overcomes the potential issues 
caused by inconsistent lengths of time series in 
describing signal time-domain similarity.

 In terms of frequency-domain similarity calculation, 
we first apply Fast Fourier Transform (FFT) to 
transform two time series into the frequency domain. 
Then, we compute the Mean Squared Error (MSE) 
between the amplitudes of the two frequency-domain 
signals to calculate the frequency-domain similarity 
dMSE. The calculation of frequency-domain similarity 
dMSE between two signals is as shown in Equation (2):

 Here, len = min(n,m), representing the length of the 
shorter sequence.
 Next, since we aim to fully consider both the time-
domain and frequency-domain information of the 
signals in the final similarity value, it is necessary to 
scale the obtained time-domain similarity value dDTW 
and frequency-domain similarity value DMSE. The scaled 
time-domain similarity value is denoted as DTD and the 
scaled frequency-domain similarity value is denoted as 
DFD. The scaling process is illustrated in Equation (3) 
and Equation (4):

 σ  is the scaling factor used to measure the 
importance of time-frequency domain similarity, in this 
study, the scaling factor σ is set to 0.5, indicating that 
temporal information and frequency information are 
considered equally important for similarity calculation.
 Finally, the scaled time-domain similarity value 
DTD and frequency-domain similarity value DFD are 
combined using Equation (5) to obtain the final signal 
similarity value, denoted as SSV. The signal similarity 
value (SSV) represents the temporal and spectral 
distance between two signals, with smaller values 
indicating a smaller temporal and spectral distance and 
higher similarity between the two signals.

Figure 5. Signal similarity calculation process.
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 The input of the entire signal similarity calculation 
section consists of two parts. The first part is the 
existing user database D, which contains N users, each 
with M gestures, and each gesture repeated L times. D 
= {G1 {R11,…,Rij,…,RNL },…,Gk {R11,…,Rij,…,RNL },…,GM 

{R11,…,Rij,…,RNL}}, where Gk represents the kth gesture, 
and Rij in Gk represents the jth repetition data of the ith 
user. The second part is the calibration gesture set D0 
for the new user, which includes only one new user 
with M gestures, each repeated once. D0 = {G1 {R01},…
,Gk {R01},…,GM {R01}}, where R01 in Gk represents the 
single calibration gesture data of the new user.
 The final output is a set W containing the similarity 
values between each calibration gesture data of the new 
user and all the repetitive data for that gesture in the 
database. W = {G1 {S11,…,Sij,…,SNL},…,Gk {S11,…,Sij,…
,SNL},…,GM {S11,…,Sij,…,SNL}, where Sij in Gk represents 
the similarity value between the single calibration 
gesture data R01 of the new user and the jth repetition 
data Rij of the ith user in the database. The pseudocode 
for the overall signal similarity calculation process is 
illustrated in Figure 6.
 In the above pseudocode, the similarity calculation 

is performed on the signals corresponding to the 
complete execution of a single gesture. This approach 
captures the global information within the entire 
time series of the gesture, accurately and intuitively 
reflecting the similarity between signals from both 
the time and frequency domains. It enables sorting the 
similarity between the signals in the database and the 
calibration gesture.
 Multimodal signal adaptation selection: After 
completing the signal similarity calculation section and 
obtaining the similarity value set W for each modality 
signal in the database, the next step is to select the 
optimal matching signals to construct the training set 
based on the sorting of similarities in W. Considering 
the influence of data quality in the database, relying 
solely on the average or median of similarity indicators 
as a threshold and selecting all signals below this 
threshold as the optimal matching signals cannot 
guarantee the accurate selection of the optimal signals. 
Especially when the behavioral patterns of patients in 
the database are close to those of the new user, there 
may be a large amount of similar data, while such 
data may be scarce when the behavioral patterns are 

Figure 6. Pseudo-code for signal similarity calculation.
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further apart. Therefore, to adaptively select similar 
data and reduce the domain gap between the training 
set and the new user, this paper proposes an adaptive 
selection method for the optimal signals. This method 
can automatically select high-similarity signals from 
the database as the optimal matching signals adaptively, 
denoted as Q representing the number of adaptively 
selected optimal matching signals. The specific steps 
are as follows:
 Selecting and combining the top Q similar signals: 
After obtaining the similarity rankings of various 
modality signals from the signal similarity calculation 
module, the value of Q is set. Q is initialized to 1, and 
Q signals are selected from each modality in ascending 
order of similarity values. After corresponding with 
each modality signal one by one, they are combined to 
create the training set.
 Train model: The training set obtained from the 
previous step trains LST-EMG-Net. The model's 
average recognition accuracy is calculated.
 Determination of the optimal matching signals: 
Increment Q by 1, then repeat steps (1) and (2). The 
range of Q is from 1 to N×L. Additionally, to reduce 
the time required to determine the optimal Q value 
during model training, we stipulate that if Q = n, and 
the recognition accuracy Accuracyn is greater than 
Accuracyn+1 and Accuracyn+2, then it is considered that 
the signal similarity is higher at this point, and n is 
considered the optimal value. The first n similar data 
points are considered the optimal matching data.
 The above steps demonstrate that the adaptive 
selection of multimodal signals allows for identifying 
and filtering data from the database, improving 
recognition accuracy. This approach mitigates the 
negative transfer caused by significant differences 
between the source and target domain signals.

2.3. Signal Augmentation Module

Considering the impact of the size of the database on 
the recognition accuracy of the model by the optimal 
Match Signal Selection Module, to maximize the 
recognition rate of the model, this paper adopts the 
Variational Autoencoder (VAE) (28) as an augmentation 

network to generate new signal samples and enrich the 
training set.
 The basic architecture of the VAE encoder-decoder 
consists of three parts: the encoder, latent variable 
generation, and decoder, as shown in Figure 7. The 
encoder uses a fully connected layer to map the input 
data to a latent space distribution, which is used to 
calculate the low-dimensional mean μ and variance σ of 
each input sEMG signal. The latent variable generation 
part computes the probability density function Z 
={Z 1,Z 2,Z 3,…,Z n} by performing mathematical 
operations with random noise e and the mean μ and 
variance σ. Finally, the decoder generates more diverse 
sEMG signals. The initial learning rate of the VAE is 
set to 0.0001, with the Adam optimizer used and a batch 
size of 100. The VAE loss function consists of two 
components: the reconstruction error loss and the KL 
divergence loss. To minimize the reconstruction error, 
this study employs Soft-DTW, a gradient-calculable 
variation of DTW similarity, as the reconstruction loss 
function to measure the difference between the original 
input data and the generated data, thereby enhancing 
the learning of signal temporal dependencies.
 This signal augmentation method used in this study 
effectively doubles the quantity of sEMG signals, 
thereby enriching the multi-modal training samples 
and further contributing to improving the model's 
recognition accuracy.

2.4. Multimodal LST-EMG-Net

In the linear projection of the model LST-EMG-Net 
(6) that we studied previously, the sEMG segments 
were transformed into patch tokens and combined with 
Position Embedding and classification token as input to 
the sub-encoder, as shown in Figure 8. However, when 
dealing with multi-modal tasks, the sub-encoder fails 
to differentiate the modalities of the patch tokens. The 
self-attention makes capturing the continuity between 
different modalities challenging and hampers the 
information interaction between modalities.
 Therefore, for multimodal tasks, we introduce a 
Modal-type embedding as shown by the gray vector 
in Figure 9. Modal-type embedding was initially 

Figure 7. Structure and loss function of variational autoencoder network.
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introduced by Kim et al. (29) in 2021 as part of a 
multimodal model to separately label image and text 
tokens, enhancing interaction between images and text. 
In this paper, Modal-type embedding is utilized to label 
sEMG and motion signals, concatenating with slice and 
position marker vectors. This allows the embedding of 
two modalities into different vector spaces of the same 
dimensionality, facilitating the interaction learning of 
category information by the encoder. The value "1" 
represents that the patch token is from the sEMG signal, 
while "2" represents that the patch token is from the 
motion signal.
 The Modal-type embedding allows distinguishing 
which type of signal the patch token originates from. 
The Modal-type embedding is concatenated with the 
patch tokens and Position Embedding and then input to 
the sub-encoder. Multimodal LST-EMG-Net facilitates 
the learning of temporal characteristics within the 
same type of signals and promotes interaction between 
different modal signals.

3. Results

This study utilized deep learning frameworks on a 
computer platform for model training and testing. The 
computer hardware configuration used is shown in 
Table 2: Intel Core i7-10700K CPU (64GB RAM), 
GeForce GTX 3090 GPU (24GB VRAM), operating 

system Ubuntu 18.04.5 LTS, and programming 
language Python 3.6.5. The network model was built, 
trained, and validated using the PyTorch 1.8.0 deep 
learning framework.
 In the validation of the algorithm, each patient in 
the dataset is taken in turn as a new user and remaining 
data from other users in the dataset as the database. 
By repeating this process, we obtained recognition 
accuracy for each user and calculated the average 
recognition accuracy. The experiments were divided 
into three parts:
 Optimal matching signal selection experiment : This 
part presents the results of signal similarity in the time-
frequency domain for each modality and demonstrates 
the change in recognition accuracy when selecting the 
top N similar signals. Taking the multimodal dataset 
of patients as an example, it explains the process of 
selecting the optimal matching signals.
 Comparison experiments :  This  par t  of  the 
experiment compares the method in this paper with 
several of the more effective small-sample gesture 
recognition algorithms that we have summarised, in 
order to demonstrate the effectiveness of the method 
proposed in this paper by exploring the differences in 
the performance of the various algorithms when dealing 
with small-sample gesture recognition problems.
 Ablation experiment: This part of the experiment is 
divided into two parts, the first part of the experiment 
are divided into two scenarios based on the composition 
of the training set. The first scenario involves not using 
new user data in the training set, while the second 
scenario involves using new user calibration gestures in 
the small sample data. The effectiveness of the optimal 
matching signal selection module, multimodal LST-
EMG-Net, and similarity calculation augmentation 
module are validated sequentially. In the second part of 
the experiments, we use three different types of data, 
namely sEMG, IMU, and sEMG + IMU, to verify that 
multimodal signals yield better results compared to 
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Figure 8. LST-EMG-Net Linear Projection module.

Figure 9. Multimodal LST-EMG-Net Linear Projection module.

Table 2. Computer development environment

Hardware environment

CPU: Intel(R) Core(TM) i7-10700K CPU 3.8GHz
RAM: 64.00GB
System: Ubuntu 18.04.5 LTS
GPU: NVIDIA Geforce GTX 3090

Software environment

Programming language: Python 3.6.5
Deep learning framework: Pytorch 1.8.0
Development tool: JetBrains Pycharm
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single-modal signals.

3.1. Optimal matching signal selection experiment

First, we evaluated the effectiveness of the optimal 
matching signal selection module on the self-collected 
stroke patient dataset:
 The 6 patients are denoted as Subject 1 to Subject 
6 (S1-S6). Each patient performed 7 gestures labeled 
Gesture 1 to Gesture 7 (G1-G7). Each gesture had 
6 repetitions labeled as Repetition 1 to Repetition 6 
(R1- R6). One of the repetitions R1, R3, R4, or R6 
of a gesture was randomly selected as the calibration 
gesture, and the repetitions R2 and R5 of the same 
gesture were used as the test set.
 Taking S1 as the new user and R1 as the calibration 
gesture as an example, we used DTW (Dynamic Time 
Warping) and FFT (Fast Fourier Transform) to calculate 
the time-frequency domain distances between the 
user's gestures in the database and the sEMG and IMU 
(Inertial Measurement Unit) signals of Gesture 1 as 
the calibration gesture. These distances represented the 
similarity values between the signals, as shown in Table 
3.
 Table 3 shows the DTW and MSE distance as time-
frequency domain similarities for each modality that 
Gesture 1 corresponds to a fist-clenching action. Except 

for Subject 5, the sEMG signals of the other subjects 
show similar time-frequency domain similarities to 
the sEMG signal of Subject 1's calibration gesture. 
However, there are significant differences in the 
similarity of the IMU signals. This demonstrates 
that the muscle activation patterns are similar among 
the subjects for Gesture 1, but there are significant 
variations in the movement trajectories during fist-
clenching. Therefore, cross-user recognition may rely 
more on the information contained in the sEMG signals. 
The time-frequency domain similarities from the graph 
above are then scaled using the multimodal signal-
adaptive selection module, resulting in the sEMG and 
IMU similarity maps shown in Figure 10.
 Each point in the graph represents one repetition 
of Gesture 1, and the point's color indicates the 
patient's identifier. The point labeled "1" represents 
the calibration gesture of the new user, while the other 
points represent the data of each patient in the database. 
Each patient has six points corresponding to the six 
repetitions of Gesture 1.
 We sequentially select the data based on the distance 
between each point and the calibration gesture point. 
The point with the shortest distance is considered the 
most similar sEMG/IMU signal, the second closest 
point is the second most similar sEMG/IMU signal, 
and so on. We select the top N similar data points 
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Table 3. Time-frequency domain similarity of sEMG and IMU for Gesture 1

Calibration 
gesture

S1G1R1

Patient 
ID

S2

S3

S4

S5

S6

Database

G1R1
G1R2
G1R3
G1R4
G1R5
G1R6
G1R1
G1R2
G1R3
G1R4
G1R5
G1R6
G1R1
G1R2
G1R3
G1R4
G1R5
G1R6
G1R1
G1R2
G1R3
G1R4
G1R5
G1R6
G1R1
G1R2
G1R3
G1R4
G1R5
G1R6

sEMG time domain 
similarity

19857
17113
17664
15901
14336
14099
15355
14253
14375
14664
15043
14684
16142
13512
13201
12773
12829
12899
34228
37123
32275
32814
24403
37392
15439
14413
15617
14855
14084
15025

sEMG frequency 
domain similarity

87764
81258
87163
76296
79550
72952
70516
67061
66950
70103
69187
69802
71191
59287
57734
52954
54230
51904
209840
227054
194394
208064
141499
235632
69035
64632
64293
64446
60028
61445

IMU time domain 
similarity

24820
18848
28720
  3658
  1679
  2336
  5442
12605
  2339
  1566
  1047
    844
  -522
  -342
  -202
    900
  -505
  1064
10158
  8867
10997
  8233
10582
  7279
  4422
  3776
  3036
  3006
  2666
  2246

IMU frequency domain 
similarity

136687
113217
163913
  27274
  16066
  20250
  19040
100635
    8545
    7007
  11653
    4373
    4498
    5393
    6011
  10988
    2837
  12723
  14845
  30776
  38618
  24182
  49617
  20191
  11588
  12296
  10492
  14249
  14510
  15820



BioScience Trends. 2025; 19(1):125-139.                                                  www.biosciencetrends.comBioScience Trends. 2025; 19(1):125-139.                                                  www.biosciencetrends.com

for each gesture, N refers to the number of the top 
N most similar data points to the current calibration 
gesture data, selected after sorting all the data based on 
similarity, repeating this process until all gestures have 
been used to create the training set. The recognition 
accuracy is evaluated using the LST-EMG-Net model, 
and the results are shown in Table 4 as N increases.
 Table 4 shows that the average recognition accuracy 
initially increases and decreases as N increases. When 
N is less than 3, the training dataset is not saturated, 
and the selected data is closest to the new user. In 
this case, increasing N significantly improves the 
accuracy. As N increases to 3-5, the selected data 
has moderate similarity with the new user, and the 
average recognition accuracy fluctuates within a 
certain range. When N is greater than 5, the selected 
data have lower similarity with the new user, resulting 
in negative transfer effects and decreased recognition 
accuracy. Based on the table, in this experiment on the 
self-collected multimodal dataset of stroke patients, 
selecting N=5 achieves the highest average accuracy of 

75.20%. This indicates that the selected data at this N 
value represents the optimal matching data.
 In addition, we visualized the best-match signal 
screening experiments on Ninapro DB5 following the 
above procedure, as shown in Figure 11.
 The graph illustrates that the value of N and 
the maximum average accuracy are related to the 
amount of user data in the database. In theory, as the 
data volume increases, more similar data are in the 
database, and the N value that achieves the maximum 
recognition accuracy will shift to the right. Therefore, 
for the Ninapro DB5, when N is equal to 9, the average 
recognition accuracy is 91.00%, both N=10 and N=11 
have accuracies lower than 91.00%. Hence, for the 
Ninapro DB5 dataset, N=9 is considered the optimal 
matching signals.

3.2. Comparison experiments

In Table 1, we have quantitatively summarized existing 
literature and selected ADANN, TSnet, and AtzoriNet* 
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Figure 10. Gesture 1 Similarity Graphs: (a) sEMG Similarity Graph (b) Selection of Nearest Gestures based on sEMG Calibration Gesture (c) 
IMU Similarity Graph (d) Selection of Nearest Gestures based on IMU Calibration Gesture.

Table 4. Recognition Accuracy of Subjects at Different N Values

Selecting Signals N

1
2
3
4
5
6
7

S1

51.97%
63.25%
74.09%
74.43%
85.95%
76.09%
75.32%

S2

64.21%
71.30%
71.80%
63.16%
61.03%
61.35%
59.08%

S3

67.05%
76.38%
89.89%
87.73%
89.48%
85.97%
82.25%

S4

48.56%
61.63%
55.84%
61.99%
64.01%
58.28%
55.34%

S5

65.90%
79.37%
71.46%
68.04%
79.26%
68.09%
65.20%

S6

80.46%
79.27%
83.09%
88.99%
77.18%
81.60%
78.03%

Average recognition

63.03%
71.87%
74.36%
74.06%
75.20%
71.90%
69.20%
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as the three best-performing methods for comparison. 
In this section, we conduct comparative experiments on 
our self-collected stroke patient dataset, Ninapro DB1 
dataset, and Ninapro DB5 dataset. Table 5 presents the 
average accuracy values of each comparative algorithm 
across the three datasets.
 From Table 5, it can be observed that our method 
achieved an average accuracy of 93.69% on the self-
collected stroke patient dataset, 98.56% on the Ninapro 
DB5 dataset, and 91.56% on the Ninapro DB1 dataset. 
This represents an improvement over ADANN by 
18.42%, 5.74%, and 6.42%, respectively, over TSNet 
by 27.37%, 34.75%, and 4.61%, respectively, and 
over AtzoriNet* by 19.41%, 33.4%, and 17.96%, 
respectively. Compared to the comparative algorithms 
ADANN, TSNet,  and AtzoriNet*,  our method 
consistently maintains a relatively high and stable 
level of average accuracy across all three datasets. 
This is primarily attributed to the optimal signal 
matching module, which selects signals most similar 
to the new user from the existing data as the training 
set, thereby reducing domain differences to a large 
extent. Additionally, our proposed LST-EMG-Net 
effectively learns features from sEMG signals, resulting 
in excellent performance in small-sample gesture 
recognition.
 We bel ieve the poorer  performance of  the 
comparison algorithms compared to the proposed 
method may be due to two main factors. First, 
regarding the network architecture design, the proposed 
method uses a Transformer architecture, while the 
comparison algorithms use convolutional architectures. 
Compared to convolutional architectures, Transformers 
have significant advantages, particularly in modeling 
long-range dependencies in sequential data, dynamic 
feature extraction, efficient parallelization, and context-
awareness. These advantages are especially evident 
when dealing with complex, multi-dimensional, long-
time series data. In contrast, convolutional architectures 
focus on local feature extraction, limiting their ability 
to model complex global interactions. Secondly, in 
terms of data volume, the proposed method utilizes data 

augmentation techniques, and the enriched data volume 
is crucial for improving accuracy.

3.3. Ablation experiments

The aim is to verify whether the proposed multimodal 
optimal matching and augmentation method can achieve 
effective recognition with reduced data collection. 
In this section, two approaches are evaluated for 
recognizing new users: (1) not using new user data in 
the training set (Experiments 1-4) and (2) using small-
sample data of the new user's calibration gesture (CG) 
(Experiments 5-8). Furthermore, the effectiveness of 
the optimal matching signal screening module (OMSS), 
the MM-LSTEMGNet, and the similarity calculation 
augmentation module (SCA) is gradually evaluated in 
both approaches using the self-collected stroke patient 
and the Ninapro DB5 dataset, as shown in Table 6.
 Experiment 2 demonstrated that using the Optimal 
Matching Signal Screening module allows for selecting 
data from the database similar to the new user, 
effectively avoiding negative transfer. This resulted in 
an improvement of 19.42% and 18.77% in accuracy on 
the two datasets, respectively, compared to Experiment 
1, where the entire database was used as the training 
set. The similarity calculation augmentation module 
effectively utilized the signals' temporal characteristics. 
Particularly, in Experiment 4, where calibration gesture 
data (CG data) was not used, there was a 9.42% 
increase in accuracy on the stroke patient dataset, 
significantly increasing the diversity of signals.
 Experiment 4 showed that a model trained only 
on the optimal matching data achieved an accuracy of 
85.85% and 93.76% on the two datasets, respectively, 
meeting basic rehabilitation needs. Experiment 8 
demonstrated that our method using only the single 
repeat calibration gesture data, the accuracy reached 
93.69% and 98.56% on the two datasets. This achieved 
results comparable to models trained on individual data 
while greatly reducing the burden of data collection. It 
makes the intelligent rehabilitation device more user-
friendly and beneficial for practical application.
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Table 5. Average Accuracy Values of Comparative 
Algorithms on Each Dataset

Model

ADANN

AtzoriNet*

TSNet

Ours

Average recognition

0.7527
0.9282
0.8523
0.7428
0.6516
0.7369
0.6632
0.6381
0.8704
0.9369
0.9856
0.9165

Dataset

Stroke patients
Ninapro DB5
Ninapro DB1
Stroke patients
Ninapro DB5
Ninapro DB1
Stroke patients
Ninapro DB5
Ninapro DB1
Stroke patients
Ninapro DB5
Ninapro DB1

Figure 11. Average recognition accuracy of Ninapro DB5 dataset 
with N value.
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 To validate whether using multimodal data can 
improve gesture recognition accuracy, in this section, 
we conducted ablation experiments using two different 
types of data: sEMG alone + IMU alone and sEMG 
+ IMU (IMU signals include 3 channels of arm 
acceleration signals, 3 channels of angular velocity 
signals, and 4 channels of quaternion signals). These 
experiments were conducted on the self-collected stroke 
patient dataset, Ninapro DB1 dataset, and Ninapro DB5 
dataset. The results of the ablation experiments on the 
three datasets are shown in Table 7.
 Table 7 shows that on our self-collected stroke 
patient dataset, using only sEMG signals resulted in 
an average accuracy increase of 3.15% compared to 
using only IMU signals. Similarly, on the Ninapro 
DB1 dataset and Ninapro DB5 dataset, using only 
IMU signals led to average accuracy improvements of 
12.91% and 7.89%, respectively, compared to using 
only sEMG signals. Furthermore, utilizing multimodal 
signals achieved an average accuracy increase of 
24.02% and 18.74% compared to using only sEMG 
signals and only IMU signals, respectively, across 
all three datasets. These results indicate that using 
multimodal signals yields higher accuracy compared to 
using single-modal signals.

4. Discussion

To alleviate the burden of data collection in gesture 
recognition, we propose a new approach to address 
small-sample gesture recognition. This method selects 
the optimal matching signals with high similarity to 
the new user from the existing users' multimodal data, 
which are then used as the training set. This reduces the 
domain differences between the signals of the target 
user and the training data, thereby avoiding the negative 
transfer issue that can affect the model's recognition 
accuracy. Additionally, the method generates enhanced 
data, which expands the diversity of the training set 
signals.
 Currently, research teams have publicly released 
large-scale datasets(30,31) such as Ninapro, Csl-hdemg, 
and Capgmyo, which contain multimodal information, 
including sEMG signals, IMU, and motion information 
collected from various devices. These datasets also 
include a substantial number of subjects and a wide 

variety of gestures. Therefore, it is relatively easy to 
obtain a large amount of multimodal public data to 
build small-sample databases, providing strong support 
for the portable use of our method.
 However, in the adaptive selection of the optimal 
signal, the method proposed in this paper still relies on 
evaluating the model accuracy to screen the optimal 
matching signals, which requires a certain amount of 
computational resources. Because the time required 
for the optimal matching signal selection process is 
influenced by the number of users in the database. 
The more users in the database, the more similarity 
calculations are needed between the new user's data 
and the existing user data, ultimately increasing the 
time required for the optimal matching signal selection, 
we are considering, as a potential avenue for future 
research, the development of a method for extracting 
common features of user gestures. This method would 
aim to extract common features from all users in the 
database for a specific action. By comparing the gesture 
data features of new users with the common features 
of relevant actions in the database, this approach can 
identify the type of gesture performed by the new 
user. Such a method would reduce the time overhead 
associated with an increasing number of users in the 
database, thereby making the gesture recognition 
method more effective in practical applications.
 In addition, an increase in the number of users 
does not necessarily lead to more training cycles, as 
it depends on whether there is beneficial similar data 
in the dataset. Currently, the entire system in practical 
applications consists of three main components: user 
data collection, model training, and model usage. The 
time required to collect user samples has been reduced 
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Table 7. Results of Ablation Experiments

Dataset

Stroke patients

Ninapro DB5

Ninapro DB1

Average recognition

0.7958
0.7463
0.9369
0.6938
0.7727
0.9856
0.6287
0.7578
0.9165

Sensor

sEMG
IMU

sEMG + IMU
sEMG
IMU

sEMG + IMU
sEMG
IMU

sEMG + IMU

Table 6. Multimodal optimal matching and augmentation method ablation experiments

Experiment

Experiment 1
Experiment 2
Experiment 3
Experiment 4
Experiment 5
Experiment 6
Experiment 7
Experiment 8

CG data

√
√
√
√

OMSS

√
√
√

√
√
√

MM-LSTEMGNet

√
√

√
√

SCA

√

√

Stroke patients dataset

55.78%
75.20%
76.41%
85.83%
88.28%
89.62%
91.08%
93.69%

Ninapro DB5 dataset

72.53%
91.30%
92.00%
93.76%
95.68%
97.17%
97.06%
98.56%
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from 6 collections in traditional algorithms to just 1, 
resulting in an efficiency improvement of 83.3%. The 
entire model training process takes approximately 15 
minutes, and these two steps only need to be performed 
once. After that, the main focus during model usage is 
the inference time. The model inference time proposed 
in this paper is only 4-6 milliseconds, which fully meets 
the real-time usage needs of new users.
 As this study is conducted in the context of hand 
rehabilitation training for stroke patients, the gestures 
used are predefined as part of the rehabilitation 
program. In contrast to random gestures performed 
in daily life, the gestures in this study exhibit low 
uncertainty. However, in real-life scenarios, patients' 
movements entail randomness and uncertainty. To 
address these issues, we plan to harness the potential 
of graph structure learning, such as leveraging 
methods like " EGNN: Graph structure learning 
based on evolutionary computation " (32), for further 
improvement and enhancement. We believe that 
graph-based learning can be applied to small-sample 
cross-user recognition for sEMG signals. In cross-
user recognition tasks, the nodes in the graph network 
can represent the signal features or muscle activity 
patterns of different users, while the edges represent 
the similarity or dependency of signals between 
different users. This approach creates a shared feature 
space across users, enabling model transfer learning or 
knowledge sharing between users.
 In summary, the multimodal optimal matching 
and augmentation method effectively improves small-
sample gesture recognition accuracy. When using only 
a single calibration gesture, it achieves 93.69%, 91.65% 
and 98.56% accuracy on the multimodal dataset of 
stroke patients, the publicly available Ninapro DB1 
dataset and the publicly available Ninapro DB5 
dataset, respectively, comparable to the performance of 
traditional recognition models trained on personal data. 
In the future, our method will be applied to active hand 
rehabilitation treatment for stroke patients.
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