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1. Introduction

Cancer has become the second leading cause of death 
worldwide, resulting in approximately 9.6 million 
deaths and 182.8 million years of life lost (1). Immune 
checkpoint inhibitors (ICIs) have revolutionized the 
treatment of malignancies and have been used to treat 
many different types of cancer. ICIs enhance the body's 
immune response to cancer cells by blocking negative 
regulatory factors expressed on immune cells or tumor 
cells through a unique mechanism. ICIs mainly consist of 
cytotoxic T-lymphocyte antigen-4 (CTLA-4) inhibitors, 
programmed cell death protein (PD)-1 inhibitors (PD-1), 
and PD-ligand 1 inhibitors (PD-L1) (2,3). However, the 

expanded indications for ICIs and their increased use has 
led to the discovery of a large number of adverse events 
associated with ICIs, termed immune-related adverse 
events (IRAEs), in clinical settings.
 Studies have shown that IRAEs are caused by an 
overactive immune response, primarily in the skin, 
endocrine, hepatic, and pulmonary systems (4,5). Owing 
to its unique immune characteristics, the liver is one 
of the organs most susceptible to the effects of tumor 
immunotherapy. Hepatitis caused by ICI treatment is 
commonly referred to as ICI-induced immune-mediated 
hepatitis (IMH). Research indicates that IMH is the third 
most common IRAE, with an incidence ranging from 
5% to 10% (6), followed by skin toxicity (44%-68%) 
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SUMMARY: Immune checkpoint inhibitors (ICIs) have been widely used in various types of cancer, but they 
have also led to a significant number of adverse events, including ICI-induced immune-mediated hepatitis (IMH). 
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nomogram model to predict the risk of IMH. Detailed information was collected between January 1, 2020, and 
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risk factors for IMH. A nomogram model was constructed based on the results of the multivariate analysis. The 
performance of the nomogram model was evaluated via the area under the receiver operating characteristic curve 
(AUC), calibration curves, decision curve analysis (DCA), and clinical impact curve (CIC) analysis. A total of 216 
(8.82%) patients developed IMH. According to stepwise multivariate logistic analysis, hepatic metastasis, the TNM 
stage, the WBC count, LYM, ALT, TBIL, ALB, GLB, and ADA were identified as risk factors for IMH. The AUC 
for the nomogram model was 0.817 in the training set and 0.737 in the validation set. The calibration curves, DCA 
results, and CIC results indicated that the nomogram model had good predictive accuracy and clinical utility. The 
nomogram model is intuitive and straightforward, making it highly suitable for rapid assessment of the risk of IMH 
in patients receiving ICI therapy in clinical practice. Implementing this model enables early adoption of preventive 
and therapeutic strategies, ultimately reducing the likelihood of immune-related adverse events (IRAEs), and 
especially IMH.
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and gastrointestinal adverse reactions (35%-50%) (7). 
Although most cases of IMH are asymptomatic and can 
be appropriately controlled with supportive therapy and 
corticosteroids (8), improper diagnosis or management 
can lead to immunotherapy failure, acute liver failure, 
and death, especially in patients with chronic liver 
disease (9,10). Previous studies have suggested that IMH 
accounts for a high proportion of fatal IRAEs. According 
to data from a global database on fatal IRAEs, 124 of 
the 613 reported deaths were associated with IMH (11). 
Similarly, a study by Wang et al. found that among 21 
melanoma patients who died from IRAEs, 5 deaths 
(23.8%) were caused by IMH (12).
 The mechanisms by which ICIs cause IMH have 
yet to be fully elucidated, and data on the clinical risk 
factors for IMH are very limited. Most importantly, there 
is no clinical model with which to accurately assess the 
risk of IMH in patients. This makes the prevention and 
management of IMH in patients receiving ICI therapy 
particularly challenging in clinical practice. Therefore, 
identifying the risk factors associated with IMH and 
predicting the risk of IMH in patients receiving ICI 
therapy is highly clinically important. This information 
will help clinicians quickly identify high-risk IMH 
patients and manage them individually, ultimately 
reducing the incidence of IMH at its source. In current 
clinical research, nomogram models are widely used 
to explore risk factors and predict risk (13). Su et al. 
recruited 2,281 consecutive patients with hepatitis 
B-related hepatocellular carcinoma from four tertiary 
hospitals in China from April 2011 to March 2022 (14). 
They utilized multivariate Cox regression to establish 
a nomogram risk prediction model, which accurately 
predicted the mortality risk of patients and effectively 
identified high-risk patients.
 Therefore, the current study aimed to investigate the 
risk factors for IMH in patients receiving ICI therapy 
and to develop and validate a new nomogram model to 
predict the risk of IMH. Ultimately, this model will guide 
personalized strategies to prevent IMH.

2. Materials and Methods

2.1. Subjects and inclusion and exclusion criteria

This study collected relevant information from 2,663 
cancer patients who received ICI therapy at Chongqing 
University Cancer Hospital from January 1, 2020, to 
December 31, 2023. The collected data include basic 
patient information such as sex, age, and body mass 
index (BMI); tumor-related data such as liver metastasis, 
TNM stage, and Karnofsky performance status (KPS); 
and biomarker data such as lymphocyte (LYM), white 
blood cell (WBC), and platelet (PLT) counts and alanine 
transaminase (ALT), aspartate transaminase (AST), 
albumin (ALB), globulin (GLB), total bilirubin (TBIL), 
alkaline phosphatase (AKP), adenosine deaminase 

(ADA), C-reactive protein (CRP), and β2-microglobulin 
(β2-MG) levels. The definition of IMH in this study was 
based on the Guidelines for the Diagnosis and Treatment 
of Autoimmune Hepatitis (2021) (15,16). The diagnostic 
criteria include elevated serum aminotransferase levels, 
positive serum autoantibodies, elevated IgG levels, and 
characteristic histological changes in the liver, while 
excluding other potential causes. All blood tests were 
conducted in the laboratory of Chongqing University 
Cancer Hospital. Informed consent was obtained from 
each patient. This study was conducted in accordance 
with the guidelines outlined in the Declaration of 
Helsinki and received ethical approval from the Ethics 
Committee of Chongqing University Cancer Hospital.
 The inclusion criteria for this study were as follows: 
i) age ≥ 18 years; ii) hospitalized at least once; and 
iii) received ICI therapy with any of three inhibitors: 
CTLA-4, PD-1, or PD-L1. The exclusion criteria were 
as follows: i) missing critical pathological data such as 
ALT, AST, PLT, ALB, GLB, and ADA; ii) death within 
48 hours of admission; iii) chronic hepatitis due to 
other causes, such as viral hepatitis, alcoholic hepatitis, 
nonalcoholic fatty liver disease, drug-induced liver 
disease, schistosomiasis, and other parasitic infections 
causing liver disease; iv) concurrent autoimmune liver 
diseases, such as primary biliary cirrhosis, primary 
sclerosing cholangitis, and overlap syndromes; v) 
primary liver cancer; and vi) combined use of two 
or more inhibitors. After applying the inclusion and 
exclusion criteria, 2,448 patients were included in the 
model, as shown in Figure 1.

2.2. Model construction and validation

Patients meeting the inclusion and exclusion criteria were 
randomly divided into a training cohort (n = 1,714) and 
a validation cohort (n = 734) at a 7:3 ratio. This process 
was implemented via the "caret" package in R software, 
with a fixed random seed number used throughout the 
study. In the training cohort, univariate logistic regression 
analysis was used to assess the impact of each clinical 
variable on the occurrence of IMH in patients. Variables 
with a p value < 0.2 in the results were then included 
in stepwise multivariate logistic regression analysis to 
identify independent factors influencing the development 
of IMH. A nomogram model was constructed on the 
basis of these results. The performance of the nomogram 
model was validated in the validation cohort. The 
discriminative ability of the nomogram was assessed 
via the area under the receiver operating characteristic 
curve (AUC). Calibration curves were generated via the 
bootstrap method with 1,000 resamples to validate the 
predictive accuracy of the nomogram in both the training 
and validation sets. The Hosmer-Lemeshow test was used 
to evaluate the goodness of fit of the nomogram model. 
Decision curve analysis (DCA) and clinical impact curve 
(CIC) analysis were performed via the "rmda" package 
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patients without IMH were older and had a higher WBC 
and PLT count, whereas those with IMH had higher 
levels of LYM, ALT, AST, ALB, GLB, TBIL, AKP, 
ADA, and β2-MG. Details are shown in Table 1.

3.2. Characteristics of the training and validation cohorts

This study used random sampling to allocate the 2,448 
patients into the training and validation cohorts, with 
1,714 patients in the training cohort and 734 patients 
in the validation cohort, while maintaining a 7:3 split 
ratio. As shown in Table 2, there were no significant 
differences between the training and validation cohorts (p 
values for all  > 0.05).

3.3. Factors influencing the development of IMH

Univariate and stepwise multivariate logistic regression 
analyses were performed with the training cohort to 
investigate the factors affecting the occurrence of IMH 
in patients receiving ICI therapy. The detailed results are 
shown in Table 3. According to stepwise multivariate 
logistic analysis, several factors were found to increase 
the likelihood of developing IMH to varying degrees: 
hepatic metastasis, TNM stage IV, WBC, LYM, ALT, 
TBIL, ALB, GLB, and ADA. Hepatic metastasis and 
TNM stage IV disease in particular were associated 
with the greatest increase in IMH risk, with a 63% 
and 61% greater likelihood than in patients without 
hepatic metastasis or those with TNM stage III disease. 
Interestingly, age was a protective factor according to 
univariate and stepwise multivariate logistic analyses. 

to evaluate the practical value of the nomogram model in 
clinical settings.

2.3. Statistical analysis

For normally distributed data, the mean ± SD was used 
for description, and a t-test was used for comparison. For 
nonnormally distributed data, the median (M), P25, and 
P75 were used for description, and nonparametric tests 
were used for comparison. Categorical data are expressed 
as frequencies and percentages, and comparisons were 
made via the chi-square test. Missing data were filled in 
with the "mice" package. All of the statistical analyses 
were performed using R version 4.1.2, and statistical 
significance was defined as a two-tailed p value < 0.05.

3. Results

3.1. Clinical characteristics of subjects

After applying the inclusion and exclusion criteria, 
2,448 study subjects were retained, 216 (8.82%) of 
whom developed IMH. The median age of the included 
subjects was 59.00 years, and 75.82% were male. 
Additionally, more than half of the patients had a BMI 
of 18.5-23.9, were in TNM stage IV, and did not have 
hepatic metastases, with proportions of 57.92%, 66.79%, 
and 87.95%, respectively. Significant differences were 
observed between patients with and without IMH in 
terms of age, Karnofsky Performance Scale (KPS) score, 
and all hematological indices except for C-reactive 
protein (CRP) (p values for all < 0.05). Specifically, 

Figure 1. Flow chart for patients enrolled in the final study cohorts.

22 
 

 
Patients with cancer who received ICI treatment and met the inclusion criteria 

between January 1, 2020, and December 31, 2023 (n=2663)

Patients  in the final analysis (n=2448)

Patients excluded (n=215)
Including:
Lack of pathology type (n=87)    
Lack of TNM staging data (n= 45)        
Lack of follow-up (n=18)
Missing critical pathological data(n=26)
Combined with autoimmune liver disease(n=18)
Chronic hepatitis due to other causes(n=21)

Patients  in the  training set (n=1714) Patients  in the validation set (n=734)

Influence factor

Nomogram Model validation

Univariate Logistic regression

Multivariate Logistic regression

Nomogram Model establishment AUC

Calibration plot

DCA

Nomogram model was used to distinguish the risk of IMH
CIC

 



BioScience Trends. 2025; 19(2):202-210.                                                  www.biosciencetrends.comBioScience Trends. 2025; 19(2):202-210.                                                  www.biosciencetrends.com

(205)

Table 1. Demographic and clinical characteristics of patients with or without IMH

Variables

Age (years)
Sex
     Female
     Male
BMI (%)
     18.5-23.9
     24-27.9
     ≥ 28
     < 18.5
TNM (%)
     III
     IV
KPS
Hepatic metastases (%)
     No
     Yes
WBC (109/L)
PLT (109/L)
LYM (109/L)
ALT (U/L)*
AST (U/L)*
ALB (g/L)
GLB (g/L)
TBIL (μmol/L)*
AKP (U/L)*
ADA (U/L)
CRP (mg/L)*
β2-MG (mg/L)

Total (n = 2,448)

  59.05 ± 10.89

   592 (24.18)
1,856 (75.82)

1,418 (57.92)
   685 (27.98)
 129 (5.27)
 216 (8.82)

   813 (33.21)
1,635 (66.79)
82.40 ± 7.63

2,153 (87.95)
  295 (12.05)
  7.53 ± 4.22

216.61 ± 90.08
  1.05 ± 0.53

23.00 [15.00, 39.00]
24.00 [18.00, 35.50]

37.10 ± 5.41
30.70 ± 6.60

9.01 [6.58, 12.59]
  88.00 [71.00, 113.62]

10.75 ± 5.70
7.54 [2.66, 37.88]

  3.03 ± 1.28

Note: *Expressed as the median (M) [P25, P75].

No-IMH (n = 2,232)

  59.47 ± 10.79

   543 (91.72)
1,689 (91.00)

1,292 (91.11)
   628 (91.68)
   112 (86.82)
   200 (92.59)

   727 (89.42)
1,505 (92.05)
82.27 ± 7.62

1,959 (90.99)
   273 (92.54)
  7.68 ± 4.30

217.72 ± 89.50
  1.03 ± 0.52

22.00 [15.00, 36.00]
23.25 [18.00, 34.00]

37.03 ± 5.43
30.43 ± 6.48

8.84 [6.52, 12.15]
  86.00 [70.00, 110.05]

10.32 ± 5.28
7.56 [2.66, 36.36]

  3.00 ± 1.26

IMH (n = 216)

  54.69 ± 11.04

  49 (8.28)
167 (9.00)

126 (8.98)
  57 (8.32)

    17 (13.18)
  16 (7.41)

    86 (10.58)
130 (7.95)

83.75 ± 7.55

194 (9.01)
  22 (7.46)

  5.96 ± 2.88
205.21 ± 95.38
  1.21 ± 0.56

  36.75 [20.00, 73.00]
  40.00 [23.00, 63.78]

37.85 ± 5.19
33.47 ± 7.22

11.09 [7.81, 16.41]
  110.00 [82.75, 165.25]

15.15 ± 7.69
  7.20 [2.53, 43.79]

  3.29 ± 1.48

p value

< 0.001
   0.649

   0.284

   0.037

   0.006
   0.440

< 0.001
   0.051
< 0.001
< 0.001
< 0.001
   0.032
< 0.001
< 0.001
< 0.001
< 0.001
   0.762
   0.002

Table 2. Clinical characteristics of the training and validation cohorts

Variables

Age (years)
Sex
     Female
     Male
BMI (%)
     18.5-23.9
     24-27.9
     ≥ 28
     < 18.5
TNM (%)
     III
     IV
KPS
Hepatic metastases (%)
     No
     Yes
WBC (109/L)
PLT (109/L)
LYM (109/L)
ALT (U/L)*
AST (U/L)*
ALB (g/L)
GLB (g/L)
TBIL (μmol/L)*
AKP (U/L)*
ADA (U/L)
CRP (mg/L)*
β2-MG (mg/L)

Training cohort (n = 1,714)

  58.97 ± 10.88

   407 (23.75)
1,307 (76.25)

1,003 (58.52)
   465 (27.13)
   91 (5.31)
 155 (9.04)

   563 (32.85)
1,151 (67.15)
82.23 ± 7.70

1,504 (87.75)
   210 (12.25)
  7.57 ± 4.14

217.82 ± 90.54
  1.07 ± 0.54

23.00 [15.00, 38.85]
24.00 [18.00, 35.00]

36.99 ± 5.45
30.62 ± 6.51

8.98 [6.54, 12.38]
  88.00 [71.00, 114.00]

10.70 ± 5.63
7.53 [2.58, 35.75]

  3.02 ± 1.27

Note: *Expressed as the median (M) [P25, P75].

Validation cohort (n = 734)

  59.23 ± 10.91

185 (25.20)
549 (74.80)

415 (56.54)
220 (29.97)
38 (5.18)
61 (8.31)

250 (34.06)
484 (65.94)
82.79 ± 7.44

649 (88.42)
  85 (11.58)
  7.44 ± 4.40

213.80 ± 88.99
  1.01 ± 0.51

23.00 [15.00, 41.54]
24.60 [18.00, 38.75]

37.37 ± 5.30
30.88 ± 6.82

9.05 [6.66, 12.88]
  86.40 [71.00, 111.00]

10.87 ± 5.86
7.59 [2.86, 39.64]

  3.05 ± 1.31

p value

0.583
0.471

0.540

0.591

0.094
0.689

0.498
0.312
0.130
0.697
0.127
0.109
0.386
0.231
0.219
0.492
0.635
0.619
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For each 1-year increase in age, the likelihood of 
developing IMH decreased by 4%.

3.4. Construction and evaluation of the nomogram model

Based on the results of stepwise multivariate logistic 
regression analysis, a nomogram model was constructed 
to predict the risk of IMH in patients receiving ICI 
therapy, as shown in Figure 2A. The total score is 
obtained by adding the scores for each factor and then 
locating the corresponding IMH risk level on the scale. 
According to the nomogram, TBIL has the greatest 

impact on predicting IMH risk, followed by GLB, WBC, 
and age. LYM, ALT, ALB, and ADA have a moderate 
impact on predicting IMH risk in patients with breast 
cancer undergoing chemotherapy.
 The nomogram model had an AUC of 0.817 (95% 
CI: 0.782-0.852) in the training set and 0.737 (95% 
CI: 0.664-0.811) in the validation set, indicating good 
performance. The model effectively identified risk levels, 
with ROC curve results (Figure 2B) showing strong 
generalizability and effective risk identification for IMH 
in ICI patients. Similarly, the calibration curves (Figures 
3A and 3B) revealed that all the points were close to the 

Figure 2. (A) Nomogram model for predicting IMH risk in ICI patients; (B) The ROC curve for the nomogram model.

Table 3. Logistic regression analysis of the risk factors for IMH in the training cohort

Variable

Age (years)
Sex
     Female
     Male
KPS
Hepatic metastases
     No
     Yes
TNM
     III
     IV
BMI
     18.5-23.9
     24-27.9
     ≥ 28
     < 18.5
WBC (109/L)
PLT (109/L)
LYM (109/L)
ALT (U/L)*
AST (U/L)*
ALB (g/L)
GLB (g/L)
TBIL (μmol/L)*
AKP (U/L)*
ADA (U/L)
CRP (mg/L)*
β2-MG (mg/L)

OR (Univariable)

0.96 (0.94-0.97, p < 0.001)

1.23 (0.82-1.83, p = 0.314)
1.02 (0.99-1.04, p = 0.110)

2.41 (1.61-3.60, p < 0.001)

1.58 (1.08-2.31, p = 0.018)

1.04 (0.71-1.51, p = 0.844)
1.42 (0.75-2.70, p = 0.284)
0.87 (0.46-1.63, p = 0.662)
1.04 (1.01-1.08, p = 0.007)
1.00 (0.99-1.00, p = 0.066)
1.63 (1.24-2.15, p < 0.001)
1.01 (1.01-1.01, p < 0.001)
1.01 (1.01-1.01, p < 0.001)
1.03 (1.02-1.05, p < 0.001)
1.00 (0.99-1.00, p < 0.001)
1.03 (1.00-1.06, p = 0.029)
1.07 (1.04-1.09, p < 0.001)
1.11 (1.08-1.14, p < 0.001)
1.00 (0.99-1.01, p = 0.110)
1.13 (1.02-1.26, p = 0.023)

OR (Stepwise - multivariable)

0.96 (0.95-0.98, p < 0.001)

1.63 (1.02-2.60, p = 0.040)

1.61 (1.05-2.46, p = 0.030)

1.05 (1.01-1.09, p = 0.008)

1.50 (1.06-2.11, p = 0.021)
1.01 (1.01-1.01, p < 0.001)

1.02 (1.01-1.03, p = 0.006)

1.03 (1.01-1.07, p = 0.041)
1.04 (1.01-1.06, p = 0.012)
1.07 (1.04-1.10, p < 0.001)
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diagonal line. The Hosmer-Lemeshow test showed that 
the p values were 0.270 and 0.857 for the training set and 
the validation set, respectively, indicating that the model 
fit well. These findings indicate that the nomogram 
model accurately predicts IMH risk in both the training 
and validation cohorts and performs excellently.
 To evaluate the clinical benefit of the model, DCA 
was used, and the results are shown in Figures 4A and 

4B. In the training cohort, the model indicated greater 
net benefit than the "all" and "none" lines at threshold 
probabilities between 1% and 39%, indicating clinical 
value. Similarly, the model indicated clinical applicability 
in the validation cohort at threshold probabilities between 
1% and 35%. CIC (Figure 4C and 4D) revealed that the 
nomogram model can be used to indicate clinical benefits 
for any ICI patients.

Figure 4. The DCA curves for the nomogram model. (A) training cohort; (B) validation cohort and CIC curves for the nomogram model; (C) 
training cohort; (D) validation cohort.

Figure 3. The calibration curves for the nomogram model. (A) training cohort; (B) validation cohort.
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4. Discussion

Understanding the risk factors for developing IMH and 
constructing a model to predict the risk of IMH are 
crucial to guiding treatment interventions and improving 
patient outcomes. In this study, liver function data, 
demographic data, and relevant hematological indices 
of cancer patients treated with ICIs were integrated to 
investigate the risk factors for IMH. Based on these 
findings, a new risk prediction model was constructed 
using a nomogram to identify the risk of IMH in 
these patients. The nomogram model can quickly and 
accurately identify the risk levels of IMH without the 
need for invasive procedures such as liver biopsies. It 
is readable and practical, making it more suitable for 
clinical practice. This model can assist in personalized 
medical treatment and optimize the safety of ICIs in 
clinical practice.
 Nomogram models play crucial roles in predicting 
the risk of liver-related diseases. They have been used to 
develop risk prediction tools for various liver diseases. 
For example, a nomogram model was constructed for 
hepatocellular carcinoma (HCC) patients treated with 
ICIs on the basis of clinical characteristics and the 
serum alpha-fetoprotein response to predict patient 
mortality risk (17). Similarly, nomogram models have 
been developed for patients with autoimmune hepatitis 
(AIH) to identify predictors of poor treatment response 
and advanced liver fibrosis and even to predict the risk 
of AIH without requiring a liver biopsy (18). However, 
no studies have proposed the use of a nomogram model 
to predict the risk of IMH. The current study is the first 
to utilize real-world data from hospitals to construct 
a nomogram model to predict the risk of IMH in 
patients receiving ICI treatment. Several studies have 
shown that nomogram models have greater predictive 
accuracy than other hepatitis risk assessment tools 
do. For example, Zhao et al. developed a nomogram 
model to predict acute liver failure (ALF) in patients 
with spontaneous rupture of hepatocellular carcinoma 
(SRHCC) with a high level of accuracy, achieving 
a C-index of 0.91 that was superior to those of the 
Child‒Pugh and ALBI models (19). Similarly, Yang et 
al. constructed a nomogram model to predict 90-day 
mortality risk in patients with hepatitis B virus-related 
acute‒chronic liver failure (HBV-ACLF) (20). This 
model outperformed the MELD score, Age-Bilirubin-
International Normalized Ratio-Creatinine (ABIC) 
score, and Albumin-Bilirubin (ALBI) score in terms of 
prediction accuracy.
 In the current study, patients with liver metastasis 
had a significantly increased risk of IMH, with a 1.52-
fold greater risk than those without liver metastasis. 
However, the relationship between IMH and liver 
metastasis is complex. A retrospective case‒control 
study by Storm et al. revealed that while liver metastasis 
was initially associated with an increased likelihood of 

IMH, this association was not significant after adjusting 
for covariates (21). Similarly, a systematic review and 
meta-analysis by Pan et al. reported that the association 
between liver metastasis and IMH was not statistically 
significant (OR: 1.47, 95% CI: 0.99-2.18; p = 0.056) (11). 
Therefore, the hypothesis is that liver metastasis may 
play a role in the occurrence of IMH. However, other 
factors, such as liver function and cancer staging, appear 
to have a greater impact on the risk of IMH in patients 
receiving ICI treatment. Patients with TNM stage IV 
disease have more severe cancer progression and often 
receive more intensive and frequent ICI treatment (22). 
This increases their risk of developing IMH compared 
to patients in other stages. Older patients tend to have 
reduced bodily activity and liver function compared to 
younger patients (23,24), which manifests as a lower 
risk of IMH in older patients in this study. Consequently, 
age emerged as a protective factor against IMH in the 
univariate and multivariate analyses.
 The mechanism of IMH involves T-cell overactivation 
(25). Thus, WBCs play a crucial role in the development 
of IMH. Studies have shown that a small number of 
intrahepatic virus-specific cytotoxic T lymphocytes 
(CTLs) and recruited monocytes/macrophages can lead 
to chronic liver inflammation, increasing the risk of IMH 
(26). Additionally, T-cell-mediated immune mechanisms 
are related to hepatitis B virus (HBV) infection, and 
immunosuppressants can impair T-cell function, leading 
to immune-mediated hepatocyte lysis and reduced 
viral clearance, further increasing the risk of IMH (27). 
That said, Johnson et al. examined a mouse model 
of T-cell-mediated hepatitis induced by lymphocytic 
choriomeningitis virus (LCMV) infection and they 
reported that the severity of hepatitis was associated with 
the activity of cytotoxic T cells in the liver and spleen 
(28). These findings emphasize the role of T cells in liver 
injury and indicate that WBC dysfunction can exacerbate 
immune-mediated liver damage, increasing the risk of 
IMH.
 Extensive research has shown that lymphocytes 
play a crucial role in IMH by mediating liver injury 
and disease progression (29). Platelets coordinate liver 
inflammation and damage through signaling factors such 
as TPL2 in iNKT cells, influencing immune-driven liver 
diseases and thereby increasing the risk of IMH (30). 
This finding is similar to the current study's findings. 
AST and TBIL are common markers of liver function 
and injury, and their elevation is a key feature of IMH, 
typically manifesting as elevated transaminases and 
other liver function abnormalities (21). Abnormal liver 
function often increases the risk of IMH.
 Additionally, Zhang et al. reported that IMH is often 
accompanied by increased AST and TBIL levels (31). 
Owing to the unique immunological characteristics of 
the liver, the occurrence of IMH is often accompanied by 
elevated levels of ALB and GLB (32). In a study on the 
impact of ICIs on liver enzymes and attenuation, Park 
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et al. reported that patients treated with ICIs had higher 
ALB levels than those at the baseline did, indirectly 
indicating that IMH is accompanied by elevated ALB 
levels (33). ADA levels in body fluids reflect the activity 
of cellular immune responses. When IMH occurs, the 
liver's cellular immune response intensifies, leading to 
increased ADA levels (34). In the current study, this was 
evident in an increase in ADA levels of one unit, which 
increased the risk of IMH by 2%.
 The current study had several innovative aspects. 
First, stringent inclusion and exclusion criteria 
were applied to exclude all unsuitable patients, and 
comprehensive characteristic data were thoroughly 
collected from patients in all age groups, ensuring the 
validity of data. Second, the direction and extent of 
the impact of each predictor on the occurrence of VTE 
in patients was investigated in the nomogram model, 
providing theoretical guidance for preventing VTE in 
clinical practice.
 That said, this study had several limitations. First, this 
was a single-center study, with all patient data collected 
from one hospital. Therefore, the generalizability of 
the nomogram model is debatable. Future studies 
could involve multicenter collaboration to validate 
the model's performance using patient data from other 
centers. Second, this study was retrospective, so it has 
inherent limitations such as recall bias and recording 
bias. Finally, the impact of patients' imaging data or liver 
biopsy results on the risk of IMH occurrence was not 
considered, and these factors were not included in the 
model as predictors. Future research could incorporate 
detailed patient characteristics, such as imaging and liver 
biopsy data. This would increase the initial cost of the 
study, but it would undoubtedly enhance the model's 
performance and quality.
 In conclusion, a model was developed to estimate the 
risk of IMH in cancer patients receiving ICI treatment. 
Based on the nomogram algorithm, this model is intuitive 
and straightforward, making it well-suited for assessment 
of the risk of patients developing IMH after ICI therapy 
in clinical practice. This nomogram model enables 
the prompt formulation of preventive and therapeutic 
strategies, ultimately reducing the likelihood of IRAEs, 
and particularly IMH. The practical use of this model in 
clinical settings could potentially enhance the quality of 
life of cancer patients.
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