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1. Introduction

Alzheimer's disease (AD) is the most prevalent 
neurodegenerative disease — responsible for 50-70% 
of dementia cases worldwide — and is characterized 
primarily by progressive cognitive dysfunction (1). 
As the global population ages, the prevalence of AD 
continues to increase, imposing a substantial burden 
on affected individuals and health care systems (2). 
The primary pathological features of AD include the 
abnormal accumulation of extracellular amyloid-β 
(Aβ) and phosphorylated tau (p-tau) protein in 
neurons. Concurrently, inflammatory responses, 
synaptic dysfunction, and neuronal loss are significant 
characteristics that cannot be overlooked in AD. Notably, 
significant changes in brain lipid peroxidation levels can 
be observed in the early stage of AD. These metabolic 
disorders of lipid components are closely related to the 
core pathological mechanisms of AD, including Aβ 
deposition, p-tau, oxidative stress, and mitochondrial 
dysfunction (3). These findings underscore the critical 
role of lipid metabolism imbalance in AD pathogenesis 
and provide important directions for identifying AD-

biomarkers and discovering novel therapeutic strategies 
through lipidomics research.
	 An estimated 60-80% of the susceptibility to AD can 
be attributed to genetic factors, with the apolipoprotein E 
ε4 (APOEε4) allele recognized as the primary genetic risk 
factor for late-onset AD (4-6). APOEε4 carriers exhibit a 
greater risk of developing AD. Specifically, individuals with 
a single APOEε4 allele face an approximately 3- to 4-fold 
greater risk of developing AD than noncarriers do, while 
those with two APOEε4 alleles have a 9- to 15-fold greater 
risk (7). In addition to exacerbating Aβ accumulation, tau 
hyperphosphorylation, and synaptic loss, APOE4 severely 
disrupts cerebral lipid metabolism and lipid transport, 
leading to cellular dysfunction, neuroinflammation 
activation, and myelin impairment — all of which are 
hallmarks of AD progression. Consequently, investigating 
APOE4-related lipid metabolism dysregulation provides 
critical insights into the pathogenesis and therapeutic 
development of AD (8-11).
	 Microglia are resident immune cells in the 
central nervous system (CNS) that primarily perform 
immunosurveillance, neurotrophic support, and plasticity 
functions in the brain (12). At the onset of AD, microglia 
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recognize and phagocytose Aβ to prevent its aggregation. 
However, in the later stage of AD, neuroinflammation 
induced by reactive microglia promotes the deposition of 
Aβ and the formation of neurofibrillary tangles (NFTs). 
Additionally, reactive microglia phagocytose synapses 
and disrupt neuronal communication in AD (13). APOE4-
related lipid metabolism disorders can induce metabolic 
reprogramming of microglia into a proinflammatory 
state, impairing their phagocytic function (14,15). This 
review first provides an overview of APOE4, and then 
analyzes APOE4-related lipid metabolism disorders 
at the cellular level, with particular emphasis on its 
impact on microglial lipid metabolism and subsequent 
effects on phagocytic and secretory functions during AD 
progression. Finally, we discuss emerging therapeutic 
strategies targeting APOE4-microglia interactions, 
highlighting their potential to restore microglial 
homeostasis and mitigate AD pathogenesis.

2. Overview of APOE4

2.1. Structure and function of APOE4

The APOE gene is located on chromosome 19 and 
encodes a secreted glycoprotein consisting of 299 
amino acids with a molecular weight of approximately 
34 kDa. Human APOE is polymorphic and comprises 
three distinct alleles: ε2, ε3, and ε4. The amino acid 
positions of the three isoforms encoded by the APOE 
allele differ at positions 112 and 158: Cys112/Cys158 
for APOE2, Cys112/Arg158 for APOE3, and Arg112/
Arg158 for APOE4 (16-18) (Figure 1A). The different 
APOE isoforms differ in their oligomerization tendency, 
structural stability, and binding affinity to lipids, 
receptors, and Aβ peptides. Structurally, APOE4 is the 
least stable isoform. It adopts a folded intermediate state 
characterized by a core α-helical structure, increased 
β-lamellar structure, and an enlarged hydrodynamic 
radius, collectively resulting in a "molten globule" state 
(19,20). This semi-folded configuration enhances the 
interaction of APOE4 with larger lipid-rich particles and 
Aβ deposits in the brain. Simultaneously, this "molten 
globule" state promotes the aggregation of lipid-deficient 
APOE4, impairing its lipid transport capacity and 
facilitating Aβ accumulation (21,22). This phenomenon 
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Figure 1. APOE4-mediated dysregulation and neurological implications. (A). Chromosomal location of the APOE gene and differences in 
different protein isoforms, the percentage of APOEε4 gene carriers, and the association of APOE4 with multiple diseases.  (B). In AD, APOE4 
promotes Aβ deposition and impairs Aβ clearance through receptor competition and BBB disruption. APOE4 drives astrocytes and microglia 
toward a pro-inflammatory phenotype and induces mitochondrial dysfunction. Importantly, APOE4 disrupts intracellular lipid metabolism, leading 
to pathological lipid droplet accumulation and accelerated AD progression. ABCA1, ATP-binding cassette transporters A1; LDLR, low-density 
lipoprotein receptor; LRP1, LDL receptor-related protein 1; AS, atherosclerosis; BBB, blood-brain barrier; CVD, cardiovascular disease; TBI, 
traumatic brain injury; CAA, cerebral amyloid angiopathy.
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instance, both Klotho-VS heterozygotes and APOEε4-
R251G can attenuate the APOEε4-associated AD risk 
(36-38). Specific single-nucleotide polymorphisms, 
including rs10553596 in the CASP7 gene and rs4934-A/
A in the SERPINA39 gene, also reduce the high risk 
of AD in APOEε4 heterozygotes (39). Strikingly, 
comorbidities such as atherosclerosis, peripheral vascular 
disease, and diabetes mellitus increase the risk of 
cognitive decline in APOEε4 carriers (40), suggesting 
that managing cognition-related risk factors in APOEε4 
carriers may represent a potential therapeutic approach.
	 Extensive mechanist ic  invest igat ions have 
substantiated the epidemiological evidence linking 
APOE4 to AD pathogenesis. In the amyloid pathway, 
APOE4 not only directly interacts with Aβ to promote 
its deposition in the CNS and accelerates the conversion 
of soluble Aβ to insoluble fibrils but also competitively 
binds to receptors such as LDLR, significantly inhibiting 
receptor-mediated Aβ clearance (41-44). APOE4-related 
blood-brain barrier (BBB) disruption also negatively 
affects Aβ clearance and precedes neuronal dysfunction, 
suggesting that vascular abnormalities may initiate 
neurodegeneration (45,46). In a nonamyloid-dependent 
pathway, APOE4 not only drives astrocytes and microglia 
toward a proinflammatory phenotype, impairing their 
immune function and exacerbating neuroinflammatory 
responses but also induces mitochondrial dysfunction, 
thereby impairing fatty acid oxidation (FAO) and 
disrupting the energy supply of the brain (47-49). Most 
importantly, APOE4 disrupts cholesterol and triglyceride 
transport and metabolism, altering cellular membrane 
lipid composition and inducing pathological lipid 
droplet (LD) accumulation (50). These lipid metabolic 
disturbances not only directly dysregulate Aβ metabolism 
but also impair endocytosis, lysosomal function, and 
brain energy homeostasis while promoting oxidative 
stress (51,52) (Figure 1B). In particular, an imbalance 
in cholesterol homeostasis can affect the formation of 
oligodendrocyte myelin, which in turn affects learning 
and memory ability (53). Although APOE4 critically 
contributes to AD progression through these multifaceted 
lipid metabolic disturbances, the underlying mechanisms 
exhibit cell-type specificity, which will be systematically 
examined in the following cellular-level analysis.

3. Lipid metabolic disturbances in diverse cell types 
mediated by APOE4

3.1. Astrocytes and neurons

Astrocytes serve as the primary source of APOE in 
the CNS, with its expression modulated by CCAAT/
enhancer-binding protein β (C/EBPβ) and mitochondrial 
function (54,55). While astrocyte-derived APOE 
normally maintains lipid homeostasis, supports synaptic 
pruning, and preserves the integrity of the BBB, APOE4 
astrocytes exacerbate neurodegenerative processes 

may represent a potential mechanism through which 
APOE4 contributes to the pathogenesis of AD.
	 Functionally, APOE participates in lipid metabolism 
and transport via lipoprotein particles. Lipidation occurs 
through two mechanisms: intracellular presecretory 
lipidation via the endoplasmic reticulum (ER)/Golgi 
pathway, and extracellular lipidation mediated by ATP-
binding cassette transporter A1 (ABCA1) (10,23,24). 
ABCA1 is expressed in peripheral hepatocytes, 
macrophages, and intestinal epithelial cells to maintain 
systemic lipid homeostasis and in CNS glial cells and 
neurons to preserve lipid homeostasis in the brain, with 
its receptor proteins regulated by the retinoid X receptor 
(RXR) and liver X receptor (LXR) system (25). For lipid 
delivery, these lipoprotein particles facilitate intercellular 
lipid transport through receptor-mediated endocytosis 
involving low-density lipoprotein receptor (LDLR) 
and LDL receptor-related protein 1 (LRP1) (26). As an 
important lipid carrier, the APOE4 isoform has abnormal 
lipid metabolism properties, which leads to increased 
levels of low-density lipoprotein cholesterol (LDL-C) and 
decreased levels of high-density lipoprotein cholesterol 
(HDL-C), thus promoting atherosclerosis and increasing 
the risk of cardiovascular diseases (19,27). Moreover, 
APOEε4 is an important risk factor for AD and cerebral 
amyloid angiopathy because it affects lipid homeostasis 
in the CNS, and APOEε4 carriers exhibit poorer 
outcomes following stroke and traumatic brain injury, 
as well as accelerated motor progression and cognitive 
decline in Parkinson's disease patients (28-31) (Figure 
1A). Overall, APOE4 drives multisystem pathologies 
through dysregulated lipid metabolism, contributing to 
cardiovascular diseases, neurodegenerative disorders, 
and poor neurological recovery, highlighting its central 
role in disease mechanisms.

2.2. APOE4 and AD

The APOEε4 allele represents the strongest genetic 
risk factor for late-onset AD, with carriers facing an 
increased risk of developing AD and often experiencing 
an earlier age of onset (5,6,16). The carrier rate of 
APOEε4 in the general population is approximately 
23.9%, with 2.1% APOEε4/ε4, 20.6% APOEε3/ε4, and 
2.3% APOEε2/ε4 (32) (Figure 1A). Notably, nearly 
all APOEε4 homozygote carriers display AD-related 
pathologic features, making it crucial to explore the 
relationship between APOEε4 and the risk of developing 
AD (33). Epidemiological studies have demonstrated 
that the prevalence of APOEε4-associated AD risk is 
associated with racial and sexual dimorphism, with 
East Asians having the highest susceptibility, followed 
by non-Hispanic Whites, while non-Hispanic Blacks 
and Hispanics have a lower risk, and female carriers 
face a significantly greater risk than males do (34,35). 
Additionally, genetic modifications complicate the 
relationship between the APOEε4 allele and AD risk. For 
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through multiple synergistic pathways (56,57). Studies 
have shown that APOE4 astrocytes exhibit profound 
dysregulation of lipid metabolism, characterized by 
aberrant sterol regulatory element-binding protein 
2 (SREBP2) activation, which increases de novo 
cholesterol synthesis despite lysosomal dysfunction-
induced accumulation (58). This metabolic imbalance 
involves upregulated lipid metabolism genes but 
downregulated transport genes, potentially mediated 
by reduced peroxisome proliferator-activated receptor 
γ (PPARγ) expression (9,56,59). This pathological 
cholesterol accumulation disrupts lysosome-dependent 
mitophagy, leading to mitochondrial dysfunction and 
early AD energy deficits (52). In addition, APOE4 
astrocytes also accumulate enlarged, oxidation-
prone LDs enriched with unsaturated triglycerides 
while secreting poorly lipidated lipoproteins that 
inefficiently support neuronal lipid demands, which 
impairs synaptogenesis and neuronal viability (60-62). 
In addition to these lipid metabolic disorders, APOE4 
astrocytes upregulate glypican-4 (GPC-4) expression, 
increase LRP1 membrane trafficking to promote tau 
propagation and hyperphosphorylation, and impair 

APOE4-mediated miRNA transfer to neurons, thereby 
disrupting neuronal metabolic and epigenetic regulation 
and ultimately contributing to synaptic dysfunction and 
memory deficits (63,64) (Figure 2A).
	 Neuronal APOE expression is increased during 
stress and aging, exerting early detrimental effects on 
synaptic function and neurodevelopment (65,66). At the 
metabolic level, APOE4 significantly interferes with 
neuronal function through lipid-dependent pathways. 
Excessive binding of APOE4 to LDLR leads to increased 
neuronal lipid uptake, resulting in lysosomal dysfunction, 
lipofuscin accumulation, and impaired autophagy, which 
subsequently triggers tau protein aggregation and brain 
cell death (67). Concurrently, APOE4-expressing neurons 
exhibit deficient fatty acid (FA) storage in LDs, leading 
to the pathological accumulation of free FAs and an 
increased risk of lipotoxicity (61). Although neighboring 
astrocytes take up these lipids, APOE4 impairs their 
transport and oxidation capacity, particularly in the 
hippocampus (61,67). Furthermore, APOE4 promotes 
ABCA1 degradation, reduces cholesterol efflux and 
activates mTORC1-mediated senescence pathways, 
ultimately impairing synaptic plasticity (68). Structurally, 

Figure 2. APOE4-mediated dysfunction of cellular lipid metabolism. (A). APOE4 astrocytes exhibit dysregulated lipid metabolism, characterized 
by SREBP2 activation, de novo cholesterol synthesis, and PPARγ suppression. Pathological cholesterol accumulation impairs mitophagy, leading to 
mitochondrial dysfunction. Additionally, APOE4 astrocytes specifically upregulates GPC-4, enhancing LRP1-mediated tau propagation. (B). APOE4 
is hydrolyzed by neuron-specific proteases, producing neurotoxic fragments that exacerbate tau pathology and activate microglia. Metabolically, 
FAs are increased in APOE4 neurons, and hyperbinding of APOE4 to LDLR further increases lipid uptake in neurons, leading to lipid metabolism 
disorders, triggering lysosomal dysfunction, lipofuscin accumulation, and impaired autophagy-mediated tau protein aggregation. C. APOE4 
microglia exhibit diverse phenotypic features, including LDAM, DAM, phagocytosis and pro-inflammatory phenotype, MGnD and TIM. SREBP2, 
sterol regulatory element-binding protein 2; GPC-4, glypican-4; FAs, fatty acids; LDAM, lipid-droplet-accumulating microglia; DAM, disease-
associated microglia; MGnD, neurodegenerative microglia; TIM, terminally inflammatory microglia.



BioScience Trends. 2025; 19(6):641-658.                                                  www.biosciencetrends.comBioScience Trends. 2025; 19(6):641-658.                                                  www.biosciencetrends.com

(645)

APOE4 undergoes neuron-specific proteolysis, 
generating neurotoxic fragments that destabilize the 
cytoskeleton and exacerbate tau pathology (69) (Figure 
2B). APOE4 also selectively depletes GABAergic 
neurons, potentially disrupting neural network balance, 
while activating microglia through cell-nonautonomous 
mechanisms to amplify neuroinflammation (70,71). 
These findings establish that APOE4 links metabolic 
dysregulation to neurodegenerative processes by 
interfering with neuronal lipid homeostasis.

3.2. Microglia

Microglial APOE expression is significantly upregulated 
in response to injury and inflammation, demonstrating 
a close association with lipid metabolic dysregulation. 
Under physiological conditions, microglia maintain 
finely regulated lipid metabolic homeostasis, where 
the dynamic equilibrium between fatty acid synthesis 
(FAS) and FAO is essential  for their  immune 
surveillance functions (15). However, the APOEε4 
genotype disrupts this equilibrium, driving microglia 
toward a dysfunctional, proinflammatory lipid droplet-
accumulating microglia (LDAM) phenotype (72,73). 
Specifically, APOE4 promotes de novo lipogenesis 
and LD accumulation by upregulating FAS while 
simultaneously suppressing autophagy-related genes 
to impair lipophagy (73,74). Additionally, APOE4 
inhibits FAO via a dual mechanism — directly by 
inducing mitochondrial structural and functional damage 
that significantly reduces β-oxidation capacity, and 
indirectly by promoting microglial polarization toward 
a proinflammatory phenotype that downregulates 
FAO-related gene expression (75,76). This "enhanced 
synthesis-suppressed degradation" imbalance ultimately 
leads to the formation of pathological LDAM. In 
AD, microglia undergo dynamic lipid metabolic 
reprogramming. During the early stages, the triggering 
receptor expressed on myeloid cells 2 (TREM2)-APOE 
pathway mediates lipid uptake and FAO to support 
energy demands and facilitate Aβ clearance (77). 
However, chronic exposure to Aβ and tau pathology 
shifts the metabolism toward LD accumulation, resulting 
in LDAM (73). At the energy metabolism level, APOE4 
microglia exhibit significant mitochondrial dysfunction, 
leading to reduced tricarboxylic acid cycle (TAC) 
efficiency and impaired FAO, in addition to hypoxia-
inducible factor 1-α (HIF1α)-driven metabolic rewiring 
from oxidative phosphorylation to glycolysis (78,79). 
Intriguingly, a unique compensatory mechanism has 
been identified in microglia. In the context of AD, 
the expression of the glycolytic enzyme hexokinase 2 
(HK2) is upregulated in microglia, and pharmacological 
inhibition of HK2 can subsequently activate lipoprotein 
lipase to increase lipid metabolism, thereby sustaining 
ATP production and promoting Aβ clearance (80). 
This glycolytic-lipid metabolic coupling appears to be 

microglia specific, as it has not been observed in other 
brain cells (80). These findings suggest that microglia 
respond to pathological stimuli through dynamic 
metabolic reprogramming mechanisms, but the APOEε4 
genotype drives microglia to a dysfunctional subtype by 
disrupting lipid metabolic balance and energy supply, 
ultimately exacerbating the neurodegenerative process.
	 As immune cells of the CNS, microglia can rapidly 
move and migrate extensively to perform immune 
surveillance and tissue repair functions. However, the 
APOEε4 genotype significantly impairs these properties, 
resulting in reduced microglial mobility and reactivity, 
accompanied by marked morphological abnormalities 
that ultimately impair their immune surveillance and 
phagocytosis functions. Specifically, APOE4-expressing 
microglia exhibit irregular structural features, including 
enlarged cell bodies and nuclei, shortened processes, 
and a flattened, discoid shape (9,81,82). Advances in 
single-cell sequencing technology have further revealed 
that microglia exhibit different subtypes, mediated by 
the reprogramming of their cellular metabolism during 
development, growth, and disease. Among these, the 
LDAM subtype emerges as a canonical APOE4-driven 
pathological subtype characterized by dysregulated 
lipid metabolism, a proinflammatory state, and impaired 
phagocytic function (72,73,81). Disease-associated 
microglia (DAMs) exhibit high expression levels of 
genes involved in lipid metabolism and phagocytosis. 
APOE4-expressing microglia exhibit metabolic 
features consistent with those of DAMs, with increased 
aerobic glycolysis and Hif1a expression but impaired 
Aβ uptake (9,78). Moreover, a subset of microglia 
enriched in phagocytic and proinflammatory genes has 
been identified in APOEε4 carriers, clustering around 
neuroinflammatory plaques and driving the conversion 
of microglia to phagocytic and proinflammatory 
phenotypes via the APOE–TREM2–TYROBP axis 
(83). In neurodegenerative diseases, the TREM2–
APOE pathway mediates the transition of microglia into 
neurodegenerative microglia (MGnD), which exert a 
neuroprotective effect by eliminating apoptotic neurons 
(84). However, APOE4 exacerbates neurodegeneration 
by activating ITGB8–TGFβ signaling, upregulating 
the expression of homeostatic checkpoint molecules 
such as Inpp5d, and inhibiting MGnD function (85). 
Additionally, terminal inflammatory microglia (TIMs), 
another APOE4-associated exhausted subtype, display 
profound Aβ clearance deficits in both AD patients 
and mouse models (86) (Figure 2C). In conclusion, 
these findings demonstrate that APOE4 exacerbates 
neurodegenerative progression through multiple 
mechanisms, orchestrating the production of diverse 
subtypes of dysfunctional microglia that exhibit 
metabolic disturbances, inflammatory dysregulation, and 
phagocytic impairment.

4. Microglial APOE4 and AD
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4.1. APOE4 in microglia exacerbates abnormal lipid 
metabolism

AD was initially described by the identification of 
numerous glial cells displaying lipid vacuoles in the brains 
of patients, highlighting the significant role of abnormal 
lipid metabolism in glial cells in the pathogenesis of 
AD (87). In particular, abnormal lipid metabolism in 
microglia not only exacerbates Aβ and tau pathology but 
is also directly associated with cognitive impairment in 
AD. Recent studies have shown that APOE4 induces 
the phosphorylation of eIF2α in microglia, activates the 
integrated stress response, and promotes the release of 
harmful lipids and synaptic loss (88).

4.1.1. POE4 in microglia and intracellular lipid droplet 
accumulation

The critical metabolic shift in the formation of microglial 
LDs involves a decrease in free FAs and an increase 
in triglycerides (89). This shift represents a defensive 
response that maintains lipid homeostasis and neutralizes 
lipid-mediated neurotoxicity by buffering excess free 
FAs and cholesterol. However, the lipid homeostasis of 
APOE4 microglia is often disrupted. Research has shown 
that APOEε4 carriers and their induced pluripotent 
stem cell (iPSC)-derived microglia tend to accumulate 
LDs. This phenomenon may be linked to the stress-
related responses promoted by microglial APOE4, 
which downregulates complement and lysosomal 
pathways, while excessive oxidative stress significantly 
contributes to LD accumulation (81). Furthermore, 
the binding of fibrillar Aβ to TREM2 receptors on the 
surface of microglia activates the PI3K–Akt–mTOR 
signaling pathway, leading to the overexpression of 
LD-related genes, including ACSL1 and PLIN2. This 
overexpression enhances triglyceride synthesis and 
promotes LD formation, especially in patients with AD 
carrying APOEε4/ε4 (73,90). Notably, the number of 
LDs is negatively correlated with cognitive function 
but positively correlated with the levels of Aβ plaques 
and tau pathology, suggesting a role for LDs in AD 
progression. ATAC-seq and RNA-seq analyses revealed 
that enhancer regions in LD-rich APOE4 microglia are 
highly enriched in protein upstream of .1 (PU.1) and 
nuclear factor kappa-B (NF-κB) family factors. PU.1 
regulates genes involved in LD formation, while NF-κB 
increases proinflammatory gene expression and induces 
the transformation of microglia into a proinflammatory 
phenotype involved in neuroinflammation, disrupting the 
neural microenvironment (73). LDAM often accumulate 
near Aβ plaques, impair lysosomal function, affect 
phagocytosis, and may accelerate the spread of plaques. 
Moreover, excessive proinflammatory cytokines and 
ROS are released, promoting neuronal lipogenesis. 
Abnormally increased lipids can be transported to 
microglia via APOE to synthesize LDs, thus forming 

a vicious cycle (72) (Figure 3). Surprisingly, in AD 
model mice, the accumulation of human iPSC-derived 
microglial LDs largely depends on microglial reactivity 
and proximity to plaques, which are impaired by the 
TREM2-R47H mutation. Specifically, TREM2 R47H-
mutant microglia exhibited reduced LD accumulation in 
vivo, decreased plaque reactivity, and decreased plaque-
associated APOE secretion, whereas the same mutation 
exacerbated LD accumulation in vitro, highlighting the 
critical regulatory role of the environmental context in 
microglial function (91,92).
	 These findings highlight how APOE4 disrupts 
the delicate balance of microglial lipid metabolism, 
transforming a potentially protective LD formation 
process into a maladaptive response that promotes AD 
progression through impaired phagocytosis, sustained 
neuroinflammation, and the creation of a neurotoxic lipid 
microenvironment. The microenvironment-dependent 
phenotypes observed in chimeric models further 
emphasize the critical interplay between cell-intrinsic 
metabolic reprogramming and the pathological brain 
milieu in shaping microglial dysfunction (91).

4.1.2. APOE4 microglia and abnormal cholesterol 
metabolism

Cholesterol is an indispensable lipid in cellular 
membranes and is essential for maintaining membrane 
fluidity and integrity (93). Numerous analyses of clinical 
data have revealed abnormal cholesterol accumulation in 
the cores of mature Aβ plaques, with elevated cholesterol 
levels in the brain often associated with AD-related 
cognitive decline and exacerbation of clinical symptoms. 
In particular, dysregulated cholesterol metabolism in 
microglia is thought to be a major driver of senescence 
pathologies in AD (94,95). APOE, a cholesterol transport 
protein, is vital for the survival and phagocytic function 
of microglia. However, microglial APOE4 disrupts 
cholesterol homeostasis and alters cholesterol transport-
related signaling pathways, impairing myelination 
and subsequently affecting cognitive function (51,53). 
Evidence indicates that cholesterol overload occurs in 
APOE4 microglia, potentially because of increased 
synthesis driven by the stress–ER Ca2+–SREBP2 
pathway. Specifically, microglial APOE4 induces ER 
stress, leading to Ca2+ depletion in the ER and activation 
of the SREBP2 transcription factor. This activation 
promotes the transcription of key genes, such as HMGCR 
and SQLE, which regulate the cholesterol biosynthesis 
pathway (96). Furthermore, microglial APOE4 may 
impair ABCA1 recycling, lysosomal function, and 
cholesterol efflux and metabolism, leading to the 
accumulation of intracellular cholesterol that ultimately 
reduces the capacity for Aβ degradation (51,97) 
(Figure 3). In addition to Aβ clearance, cholesterol may 
significantly influence Aβ plaque formation because of 
its uneven distribution in the cell membrane, where it 
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aggregates with sphingolipids and scaffolding proteins to 
form lipid rafts. These rafts are involved in the cleavage 
of amyloid precursor proteins and the generation of Aβ 
by α-, β-, and γ-secretases. Disruption of cholesterol 
homeostasis can lead to abnormal accumulation and 
release of Aβ, promoting plaque formation (98,99).
	 Recent studies have demonstrated that using 
LXR agonists, overexpressing ABCA1, or activating 
TRPV1 can increase cholesterol efflux and reduce 
the accumulation of cholesteryl esters in microglia, 
thereby ameliorating APOE4-related neurodegeneration 
(51,96,100). These findings suggest that APOE4 disrupts 
cholesterol homeostasis in microglia through multiple 
mechanisms, including enhanced cholesterol biosynthesis 
via the ER stress pathway and impaired efflux via ABCA1 
dysfunction. The resulting cholesterol overload not only 
impairs Aβ clearance and promotes plaque formation, 
but also contributes to broader neurodegenerative 
processes by disrupting myelin integrity and synaptic 

function. Importantly, therapeutic strategies targeting 
cholesterol metabolism have shown promise in alleviating 
APOE4-driven pathology, highlighting the central 
role of cholesterol dysregulation in AD pathogenesis 
(51,68,96,100).

4.1.3. APOE4-mediated dysregulation of lipid metabolism 
in microglia disrupts communication between neurons and 
microglia

Microglia serve as sentinels in the neural network, and 
their interactions with neurons are regulated by a complex 
array of intercellular signaling mechanisms, including 
purinergic signaling, cytokines, neurotransmitters, 
and neuropeptides (101,102). However, APOE4 alters 
purinergic signaling and lipid metabolism in microglia, 
which in turn affects their communication with neurons. It 
has been demonstrated that APOE4 induces a pronounced 
accumulation of LDs in microglia, which not only 

Figure 3. Microglial APOE4-mediated dysregulation of lipid metabolism in AD. Microglial APOE4-mediated upregulation of triglyceride 
synthesis exacerbates the accumulation of LDs under Aβ stimulation, whereas TREM2-R47H reduces intracellular LDs accumulation. In addition, 
microglial APOE4 promotes cholesterol synthesis via the ER stress-ER Ca2+-SREBP2 pathway and impairs cholesterol efflux, affecting Aβ 
degradation in lysosomes. The accumulation of extracellular cholesterol increased GIRK3 and decreased neuronal excitability. Microglial APOE4 
also decreased lipid transport efficiency and disrupted lipid metabolic coupling in neurons. Ultimately, phagocytosis-impaired APOE4 microglia 
release pro-inflammatory cytokines and ROS that promote neuronal lipogenesis and translocation to microglia, creating a vicious cycle. ACSL, acyl-
CoA synthetase long-chain; ER, endoplasmic reticulum; GIRK3, G protein-gated inwardly rectifying potassium channel 3; ROS, reactive oxygen 
species; LDs, lipid droplets; TREM2, triggering receptor expressed on myeloid cells 2.
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impairs their phagocytosis and clearance of pathological 
proteins but also disrupts their interactions with neurons 
(8,72,103). Mechanistic studies revealed that APOE4 
drives these pathological processes through multiple 
convergent pathways. It compromises the lipid uptake 
efficiency of microglia, leading to extracellular lipid 
accumulation and enhanced proinflammatory signaling, 
ultimately attenuating their ability to monitor neuronal 
network activity — a phenomenon closely aligned with 
the aberrant neural network activity observed in AD 
patients. In addition, APOE4 shifts microglial energy 
metabolism from oxidative phosphorylation toward 
glycolysis, further exacerbating intracellular lipid 
accumulation (103,104). This metabolic dysregulation 
triggers a cascade of pathological consequences. The 
most immediate manifestation is impaired lipid reuptake 
by APOE4 microglia, resulting in extracellular cholesterol 
accumulation that induces significant hyperpolarization of 
neuronal resting membrane potentials and upregulation of 
G protein-coupled inwardly rectifying potassium channels 
(GIRK3), collectively reducing neuronal excitability 
(103) (Figure 3). More critically, LDAM secrete toxic 
factors that not only promote abnormal p-tau deposition 
in neurons but also activate apoptotic pathways (73). 
Concurrently, proinflammatory cytokines released by 
LDAM drive intracellular LD accumulation in neurons, 
exacerbating neuronal damage. Interestingly, neurons 
are not passive recipients but actively regulate microglial 
lipid metabolism through AMPK-mediated suppression 
of lipogenesis and activation of lipophagy, thereby 
modulating lipid flux to microglia and demonstrating a 
sophisticated bidirectional regulatory mechanism (105).
	 These findings provide novel insights into the 
pathogenesis of neurodegenerative diseases. APOE4 
disrupts metabolic coupling between neurons and 
microglia by impairing microglial lipid transport capacity, 
which is characterized by decreased APOE-containing 
lipoprotein particles and reduced lipidation levels, 
ultimately leading to neural network dysfunction (106). 
Building upon this understanding, current research is 
focused on developing innovative therapeutic strategies 
to increase APOE4-mediated lipid transport efficiency. 
By restoring metabolic homeostasis and restoring neural 
network stability, these interventions represent promising 
avenues for AD treatment.

4.2. Microglial APOE4 promotes neuroinflammation

Neuronal death caused by neuroinflammation in AD 
is far greater than that caused by Aβ plaques and 
NFTs, establishing neuroinflammation as a hallmark 
pathological feature of AD (107-110). Microglia, the 
central orchestrators of this inflammatory cascade, release 
a plethora of cytokines, including tumor necrosis factor 
α (TNF-α) and interleukin 1β (IL-1β), which are crucial 
for modulating the inflammatory cascade. Importantly, 
microglial APOE4 has a bidirectional interaction between 

lipid metabolism disorders and neuroinflammation: 
it both directly activates inflammatory pathways and 
aggravates neuroinflammation by disrupting lipid 
homeostasis (72,73,75,111).
	 First ,  microglial  APOE4 directly act ivates 
inflammatory pathways through multiple mechanisms. 
Zhou et al. reported that APOE4 binds to LilrB3 on the 
surface of microglia to upregulate the expression of 
relevant type I interferon-stimulating genes, including 
IFITM3, BST2, MX1, ISG15, and STAT1. This transition 
drives microglia to enter a proinflammatory state, 
hinders their phagocytic function, and contributes 
to Aβ deposition (75). In addition to this receptor-
mediated pathway, APOE4 also intrinsically primes 
microglia toward inflammation. In the basal state, 
APOE4-expressing microglia exhibit an obvious 
proinflammatory effect, which manifests as increased 
activation of the NLRP3 inflammasome and excessive 
production of reactive oxygen species (ROS), leading 
to cellular immune dysfunction. This proinflammatory 
phenotype is further exacerbated by immune stimulation 
such as lipopolysaccharide (LPS) and interferon-gamma 
(IFN-γ), which promote the secretion of inflammatory 
factors such as TNF-α, IL-1β, NOS2 and MCP1 in large 
amounts, especially in female mice. More importantly, 
microglial nAPOE41-151 significantly increases the 
expression of the proinflammatory cytokine TNF-α by 
inhibiting Cxorf56, thus leading to the formation of a 
full-spectrum inflammatory amplifying pathway from 
the basal state to the immune-activated state (112-114). 
All of the above findings indicate that microglial APOE4 
activates neuroinflammation and affects microglial 
function. Second, APOE4-induced lipid dysregulation 
further amplifies this inflammatory response. Metabolic 
reprogramming of APOE4-expressing microglia 
enhances glycolysis, inhibits TAC, and directs carbon 
flux toward lipid synthesis (78). This results in the 
accumulation of pathological LDs and increased 
release of proinflammatory lipid mediators, including 
prostaglandins and arachidonic acid metabolites, 
activating neuroinflammatory pathways (78). Moreover, 
lipid peroxides and cholesterol accumulated by 
APOE4 microglia activate the NF-κB signaling axis, 
creating a self-reinforcing cycle of cytokine production 
and metabolic dysfunction (73). On the other hand, 
accumulated lipids enhance Major Histocompatibility 
Complex Class II (MHC-II)-dependent antigen 
presentation, thereby hyperactivating T cells and 
contributing to neuroinflammation (100). It has also been 
reported that APOE4 microglia secrete more oxysterol 
25-hydroxycholesterol (25-HC) and IL-1β following LPS 
treatment, with 25-HC further significantly increasing 
IL-1β secretion; these findings highlight a lipid-driven 
mechanism through which APOE4 sustains chronic 
neuroinflammation (111) (Figure 4A). Collectively, 
APOE4 microgl ia-mediated l ipid metabol ism 
disturbances trigger cell membrane dysfunction 
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and the release of inflammatory mediators, which 
activate microglia while impairing their Aβ clearance 
capacity, ultimately promoting neuronal apoptosis. The 
accumulation of Aβ deposits and inflammation further 
exacerbate lipid metabolic dysregulation, creating a 
spatially specific self-reinforcing cycle. This bidirectional 
crosstalk mechanism reveals how APOE4 promotes 
neurodegenerative progression through "metabolism-
inflammation" interplay.
	 Notably, therapeutic strategies targeting this 
lipid-inflammation axis have shown promising 
neuroprotective effects. Pharmacological agents such 
as acyl-CoA cholesterol Acyltransferase (ACAT) 
inhibitors demonstrate dual functionality by enhancing 
cholesterol efflux while concurrently suppressing NF-
κB-mediated cytokine release (115). This metabolic 
reprogramming attenuates both neuroinflammation and 
lipid accumulation, effectively breaking the vicious cycle 
that drives disease progression.

4.3. Microglial APOE4 inhibits the clearance of 
pathological proteins

Microglial phagocytosis plays a pivotal role in 
maintaining CNS homeostasis  by el iminating 
neurotoxic substances, including Aβ and p-tau, and 
participating in neural circuit remodeling. However, 
the APOEε4 genotype substantially impairs this critical 
function through multifaceted mechanisms during 
AD pathogenesis. Under physiological conditions, the 
TREM2-dependent lipid metabolic network coordinates 
cholesterol efflux through the LXR/PPARγ pathway, 
maintains phago-lysosomal cycling, and activates 
microglia to phagocytose diffuse Aβ, compressing it 

into dense Aβ plaques that are less toxic and prevent its 
further spread in the brain (44,116,117).
	 The presence of APOE4 disrupts this sophisticated 
regulation through several interconnected pathways. It 
induces mitochondrial dysfunction while simultaneously 
compromising pseudopod extension capacity because 
of altered membrane fluidity from abnormal lipid 
accumulation, coupled with downregulated TREM2 
expression, collectively impairing phagocytic capacity 
(74,118). Furthermore, APOE4 increases the likelihood 
of forming fibrillar aggregates within microglia that 
serve as nucleation sites for Aβ plaque formation and 
specifically suppresses Aβ42 clearance by disrupting 
ITGB8–TGFβ signaling, as demonstrated by animal 
studies showing that selective ablation of microglial 
APOE4 expression restores their phagocytic function 
and markedly reduces the plaque burden (42,85). 
Interestingly, in female AD patients carrying APOEε4, 
APOE4-expressing neutrophils upregulate the expression 
of IL-17F, which interacts with microglial IL-17RA to 
disrupt Aβ clearance, ultimately impacting cognitive 
function. Interrupting the IL-17F/IL-17RA signaling 
pathway ameliorates cognitive deficits and reduces Aβ 
deposition in AD (119) (Figure 4B). These findings 
systematically elucidate how APOE4 synergistically 
impairs microglial phagocytosis through multiple 
mechanisms such as lipid metabolism disorders to affect 
Aβ pathology.
	 Microglial phagocytosis also contributes to the 
propagation of tau pathology. In general, reactive 
microglia exert neuroprotective effects by actively 
engulfing tau proteins and tau-laden synapses and 
neurons for clearance (120). However, APOE4 
fundamentally alters this homeostatic mechanism by 

(649)

Figure 4. Microglial APOE4 promotes neuroinflammation and inhibits the clearance of pathological proteins in AD. (A). Microglial 
APOE4 promotes neuroinflammation by interacting with LilrB3 to upregulate ISGs, or inhibiting Cxorf56 to enhance TNF-α secretion in AD. 
In addition, NLRP3 inflammasomes and ROS were increased in APOE4 microglia, and more inflammatory factors were secreted in response to 
LPS and IFN-γ stimulation, further confirming the involvement of APOE4 in microglia-mediated neuroinflammation. (B). Upper part: APOE 
accumulates around Aβ plaques, compacting diffuse Aβ into less toxic core plaques and restricting their dissemination within the brain. Lower 
part: microglial APOE4 inhibits Aβ clearance, promotes Aβ plaque formation, reduces tau degradation, and facilitates tau spread via exosomes. 
Meanwhile, APOE4 microglia enhance synaptic phagocytosis near Aβ plaques, correlating with cognitive decline. ISGs, interferon-stimulating 
genes; LPS, lipopolysaccharide; IFN-γ, interferon-gamma.
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initiating a cascade of pathological events. APOE4-
driven lipid metabolic dysregulation induces intracellular 
LD accumulation, which compromises plasma 
membrane integrity and severely impairs endosomal–
lysosomal system functionality (15,68,121). This 
organelle dysfunction directly attenuates the processing 
and degradation capacity of tau proteins, leading to 
abnormal intracellular accumulation of p-tau (51). The 
accumulated pathological p-tau subsequently undergoes 
exosome-mediated release, thereby facilitating its 
intercellular propagation (51,122). Neuroimaging studies 
have consistently demonstrated significantly enhanced 
p-tau accumulation in APOE4 carriers, while the 
ameliorative effects of the APOE4-R136S homozygous 
mutation on tau pathology provide compelling genetic 
evidence for the pivotal role of APOE4 in regulating tau 
protein metabolism (123,124). In particular, aggregates 
of Aβ and tau near synapses have been shown to recruit 
microglia to phagocytose pathological synapses, thereby 
exacerbating synaptic dysfunction in AD. Increased 
phagocytosis of synapses by microglia was observed 
in the brains of AD patients carrying APOEε4, which 
was particularly pronounced near Aβ plaques (125,126) 
(Figure 4B). Reactivation of transient receptor potential 
vanilloid 1 (TRPV1) has been shown to ameliorate 
cerebral lipid metabolic dysregulation, reduce LD 
accumulation, and attenuate microglial synaptic pruning, 
thereby ameliorating tau pathology and memory 
impairment (96,100). These findings reveal that APOE4 

not only aggravates the impairment of Aβ/tau clearance, 
but also actively promotes pathological protein 
propagation and synaptic damage through dysregulation 
of the metabolism–phagocytosis pathway, suggesting 
that targeting the lipid metabolic reprogramming of 
APOE4 microglia may be a key strategy to attenuate AD 
progression.
	 APOE4 exacerbates AD progression through 
multifaceted mechanisms that disrupt microglial lipid 
homeostasis, thereby affecting neuroinflammation and 
the clearance of pathological proteins (127,128). APOE4-
induced lipid metabolic dysregulation and mitochondrial 
dysfunction impair lysosomal degradation capacity, 
significantly compromising the clearance of Aβ and tau 
aggregates by microglia (74). Concurrently, aberrant lipid 
metabolism activates inflammatory signaling pathways, 
promoting excessive secretion of proinflammatory 
factors and establishing a persistent neuroinflammatory 
microenvironment. This inflammatory cascade further 
disrupts microglial function, ultimately resulting in 
neuronal death. These pathological alterations mutually 
reinforce each other, establishing a vicious cycle of "lipid 
metabolic dysregulation–neuroinflammation–functional 
impairment" (14,15,72,73,78,100,111). Consequently, 
therapeutic strategies targeting APOE4-mediated 
microglial lipid metabolic pathways, simultaneously 
suppressing inflammatory responses and restoring 
phagocytic function, may offer novel intervention 
approaches for AD treatment.

(650)

Figure 5. Summary of the role of microglial APOE4 in AD. APOE4-driven abnormal lipid metabolism of microglia is the core, which further 
aggravates neuroinflammation, eventually affects the immune phagocytosis of microglia, and accelerates the pathological process of AD.
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5. Promising therapeutic strategies targeting 
microglial APOE4

Despite decades of research into treatments for AD, 
the therapeutic landscape remains limited. This review 
summarizes advances in microglia- and APOE4-related 
AD therapy (Table 1). In terms of metabolic regulation, 
lipid metabolism disorders can be alleviated by inhibition 
of cholesterol synthesis by TRPV1, promotion of 
cholesterol efflux by an LXR agonist (CS-6253), or 
enhancement of APOE4 lipidation by an RXR agonist 
(bexarotene) (96,100,129-131). Notably, pharmacological 
inhibition of diacylglycerol O-acyltransferase 2 
(DGAT2) in microglia has been demonstrated to 
suppress triglyceride biosynthesis and subsequent LD 
accumulation, whereas genetic ablation of perilipin 
2 (PLIN2) promotes LD degradation and attenuates 
neuroinflammation (132,133). These results suggest that 
targeting lipid metabolism is a promising therapeutic 
strategy for ameliorating pathological progression in AD. 
In the context of neuroinflammation, dimethyl malonate 
(DMM) reduces HIF1α expression in the microglia 
of AD model mice, promotes an anti-inflammatory 
phenotype, and attenuates neuroinflammation (134). 
Given that microglial APOE4 is associated with the 
upregulation of the NLRP3 inflammasome, modulation 
of the NLRP3 inflammasome is also a viable option to 
mitigate neuroinflammation (114). NLRP3 inhibitors, 
such as JC-124, dihydromyricetin (DHM), DAPPD, and 
dapansutrile (OLT1177), have shown potential in curbing 
neuroinflammation and enhancing Aβ clearance (135-
138). Additionally, the ubiquitin ligase COP1 is another 
target for AD therapy because it modulates CEBP 
levels and attenuates proinflammatory gene expression 
in microglia (139). Strikingly, traditional herbal 
compounds, such as resveratrol and curcumin, have 
demonstrated the ability to inhibit microglia-associated 
neuroinflammation as potential therapeutic agents (140-
142). The interaction between lipid metabolism and 
neuroinflammation is ultimately reflected in microglial 
dysfunction. For example, rutin sodium (NaR) and the 
5-HT2A receptor antagonist desloratadine increase 
the expression of phagocytic receptors on the surface 
of microglia, and NaR promotes a shift in oxidative 
phosphorylation to generate the ATP required for 
efficient Aβ clearance (143,144). Furthermore, the 
AMPKα1 activator DW14006, and the TREM2 activator 
AL002c (NCT03635047, NCT04592874) have been 
shown to increase microglial phagocytosis of Aβ (145-
148). Although some progress has been made in the 
study of microglial dysfunction as a therapeutic target for 
AD in animal models and at the cellular level, translating 
these findings into effective therapies in humans remains 
challenging.
	 Therapeutic strategies targeting the APOEε4 allele 
have also been important focuses in AD research. Studies 
have reported that small-molecule mimetics such as Aβ12-

28p and the APOE mimic CN-105 reduce Aβ plaques 
and tau pathology by disrupting the interaction between 
APOE4 and Aβ (149-151). Recent research underscores 
the significant benefits of reducing APOE4 levels in 
AD. In a mouse model expressing human APOE4, 
immunotherapy with the anti-human APOE antibody 
HAE-4 has been shown to decrease the number of Aβ 
plaques and tau protein while inhibiting the expression 
of proinflammatory genes (152,153). Moreover, another 
promising approach involves the delivery of the human 
APOEε2 gene via adeno-associated virus (AAV), which 
has been shown to prevent or even reverse the deleterious 
effects of APOE4 on brain amyloid pathology, with 
intracisternal delivery being the most effective method 
(154,155). LX1001, a drug targeting the APOEε4 allele, 
has recently completed testing in phase I/II clinical trials. 
They have reported positive results regarding a dose-
dependent increase in APOE2 protein expression and 
reductions in disease-associated tau protein biomarkers 
(156,157). The advent of CRISPR-Cas9 gene editing 
technology offers the potential to convert APOE4 to 
other isoforms, although this approach is accompanied 
by technical, ethical, and safety challenges (9,158).
	 Despite growing interest in microglial dysfunction 
and APOE4 as therapeutic targets for AD, no effective 
drugs currently exist to specifically correct APOE4-
driven lipid metabolic abnormalities in microglia. 
Emerging evidence suggests that APOE4 exerts cell-
type-specific pathogenic effects and that intervening 
with APOE4 in specific cell types can yield more 
precise results while alleviating the potentially toxic side 
effects associated with full-scale interventions targeting 
APOE4 (159). The critical role of microglial APOE4 
in AD underscores its significance as a research focus, 
and future studies may provide breakthroughs in the 
treatment of AD.

6. Conclusion

AD is a progressive neurodegenerative disorder with 
complex pathogenic mechanisms. The APOEε4 allele, 
the most significant genetic risk factor for AD, primarily 
mediates its pathological effects through microglial 
dysfunction, in which dysregulated lipid metabolism 
emerges as a pivotal pathogenic driver. Increasing 
evidence indicates that APOEε4 disrupts microglial 
lipid homeostasis by impairing cholesterol efflux and 
promoting excessive LD formation, consequently 
(1) inducing proinflammatory cytokine secretion to 
activate microglia and aggravate neuroinflammation; 
(2) impairing phagocytic function by hindering energy 
metabolism, membrane fluidity and lysosomal activity; 
and (3) disrupting neuron‒microglia crosstalk through 
lipid-mediated signaling pathways. The activation 
of neuroinflammation further aggravates abnormal 
lipid metabolism and affects the immune function of 
microglia. This pathogenic triad — lipid dysregulation, 

(651)
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sustained neuroinflammation and impaired phagocytosis 
— forms a self-perpetuating cycle that exacerbates AD 
progression. Current therapeutic strategies for this axis 
include restoring the homeostasis of lipid metabolism 
in microglia, reducing neuroinflammation, enhancing 
immune phagocytosis by microglia, and reducing the 
expression of APOE4. Future research should aim to 
elucidate the molecular mechanisms underlying APOE4-
mediated lipid metabolism disorders in microglia, 
develop lipidomic signatures as predictive biomarkers 
for APOE4-targeted interventions, and design integrated 
treatment approaches that synergistically address 
multiple pathological cascades in AD.
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