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SUMMARY: The apolipoprotein E €4 (4APOE ¢4) allele, the strongest genetic risk factor for late-onset Alzheimer's
disease (AD), induces cell-type-specific disturbances in brain lipid metabolism. Although impacting astrocytes and
neurons, its most pronounced effects occur in microglia, where it causes energy metabolism deficits and promotes the
formation of lipid droplet-accumulating microglia, triggering a cascade of neurodegenerative responses. This review
comprehensively examines how microglial APOE4-driven lipid metabolic dysregulation exacerbates neuroinflammation
and compromises phagocytic capacity, particularly in the clearance of amyloid-3, phosphorylated-tau, and pathological
synapses. Mechanistically, microglial APOE4 activates neuroinflammation via LilrB3-mediated type I interferon
signaling and induces lipid metabolic imbalance through PU.1/NF-kB-driven transcriptional reprogramming and ER
stress-SREBP2 activation. These disturbances exacerbate neuroinflammation, promote lipid droplet accumulation and
cholesterol overload, impair lysosomal function, and ultimately compromise microglial phagocytosis. The resulting
disruption of neuron-microglia interactions further amplifies neurotoxicity in AD. Furthermore, this review summarizes
emerging therapeutic strategies targeting APOE4-related pathway in microglia. By synthesizing these insights, this
review highlights the multifaceted role of microglial APOE4 in AD pathology, with particular emphasis on the central
role of lipid metabolism dysregulation, and provides new intervention ideas for reducing its damage to brain function.
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1. Introduction

Alzheimer's disease (AD) is the most prevalent
neurodegenerative disease — responsible for 50-70%
of dementia cases worldwide — and is characterized
primarily by progressive cognitive dysfunction (/).
As the global population ages, the prevalence of AD
continues to increase, imposing a substantial burden
on affected individuals and health care systems (2).
The primary pathological features of AD include the
abnormal accumulation of extracellular amyloid-p
(AB) and phosphorylated tau (p-tau) protein in
neurons. Concurrently, inflammatory responses,
synaptic dysfunction, and neuronal loss are significant
characteristics that cannot be overlooked in AD. Notably,
significant changes in brain lipid peroxidation levels can
be observed in the early stage of AD. These metabolic
disorders of lipid components are closely related to the
core pathological mechanisms of AD, including A
deposition, p-tau, oxidative stress, and mitochondrial
dysfunction (3). These findings underscore the critical
role of lipid metabolism imbalance in AD pathogenesis
and provide important directions for identifying AD-

biomarkers and discovering novel therapeutic strategies
through lipidomics research.

An estimated 60-80% of the susceptibility to AD can
be attributed to genetic factors, with the apolipoprotein E
€4 (APOE€4) allele recognized as the primary genetic risk
factor for late-onset AD (4-6). APOEe4 carriers exhibit a
greater risk of developing AD. Specifically, individuals with
a single APOEe4 allele face an approximately 3- to 4-fold
greater risk of developing AD than noncarriers do, while
those with two APOFE¢e4 alleles have a 9- to 15-fold greater
risk (7). In addition to exacerbating Ap accumulation, tau
hyperphosphorylation, and synaptic loss, APOE4 severely
disrupts cerebral lipid metabolism and lipid transport,
leading to cellular dysfunction, neuroinflammation
activation, and myelin impairment — all of which are
hallmarks of AD progression. Consequently, investigating
APOEA4-related lipid metabolism dysregulation provides
critical insights into the pathogenesis and therapeutic
development of AD (8-11).

Microglia are resident immune cells in the
central nervous system (CNS) that primarily perform
immunosurveillance, neurotrophic support, and plasticity
functions in the brain (/2). At the onset of AD, microglia
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recognize and phagocytose Af to prevent its aggregation.
However, in the later stage of AD, neuroinflammation
induced by reactive microglia promotes the deposition of
AP and the formation of neurofibrillary tangles (NFTs).
Additionally, reactive microglia phagocytose synapses
and disrupt neuronal communication in AD (/3). APOE4-
related lipid metabolism disorders can induce metabolic
reprogramming of microglia into a proinflammatory
state, impairing their phagocytic function (/4,15). This
review first provides an overview of APOE4, and then
analyzes APOE4-related lipid metabolism disorders
at the cellular level, with particular emphasis on its
impact on microglial lipid metabolism and subsequent
effects on phagocytic and secretory functions during AD
progression. Finally, we discuss emerging therapeutic
strategies targeting APOE4-microglia interactions,
highlighting their potential to restore microglial
homeostasis and mitigate AD pathogenesis.

2. Overview of APOE4

2.1. Structure and function of APOE4

The APOE gene is located on chromosome 19 and
encodes a secreted glycoprotein consisting of 299
amino acids with a molecular weight of approximately
34 kDa. Human APOE is polymorphic and comprises
three distinct alleles: €2, €3, and €4. The amino acid
positions of the three isoforms encoded by the APOE
allele differ at positions 112 and 158: Cys112/Cys158
for APOE2, Cys112/Arg158 for APOE3, and Argl12/
Argl58 for APOE4 (16-18) (Figure 1A). The different
APOE isoforms differ in their oligomerization tendency,
structural stability, and binding affinity to lipids,
receptors, and AP peptides. Structurally, APOE4 is the
least stable isoform. It adopts a folded intermediate state
characterized by a core a-helical structure, increased
B-lamellar structure, and an enlarged hydrodynamic
radius, collectively resulting in a "molten globule" state
(19,20). This semi-folded configuration enhances the
interaction of APOE4 with larger lipid-rich particles and
AP deposits in the brain. Simultaneously, this "molten
globule" state promotes the aggregation of lipid-deficient
APOE4, impairing its lipid transport capacity and
facilitating AP accumulation (2/,22). This phenomenon
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Figure 1. APOE4-mediated dysregulation and neurological implications. (A). Chromosomal location of the APOE gene and differences in
different protein isoforms, the percentage of APOEe4 gene carriers, and the association of APOE4 with multiple diseases. (B). In AD, APOE4
promotes AP deposition and impairs AP clearance through receptor competition and BBB disruption. APOE4 drives astrocytes and microglia
toward a pro-inflammatory phenotype and induces mitochondrial dysfunction. Importantly, APOE4 disrupts intracellular lipid metabolism, leading
to pathological lipid droplet accumulation and accelerated AD progression. ABCA1, ATP-binding cassette transporters Al; LDLR, low-density
lipoprotein receptor; LRP1, LDL receptor-related protein 1; AS, atherosclerosis; BBB, blood-brain barrier; CVD, cardiovascular disease; TBI,

traumatic brain injury; CAA, cerebral amyloid angiopathy.
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may represent a potential mechanism through which
APOEA4 contributes to the pathogenesis of AD.

Functionally, APOE participates in lipid metabolism
and transport via lipoprotein particles. Lipidation occurs
through two mechanisms: intracellular presecretory
lipidation via the endoplasmic reticulum (ER)/Golgi
pathway, and extracellular lipidation mediated by ATP-
binding cassette transporter A1 (ABCAL) (10,23,24).
ABCAL1 is expressed in peripheral hepatocytes,
macrophages, and intestinal epithelial cells to maintain
systemic lipid homeostasis and in CNS glial cells and
neurons to preserve lipid homeostasis in the brain, with
its receptor proteins regulated by the retinoid X receptor
(RXR) and liver X receptor (LXR) system (25). For lipid
delivery, these lipoprotein particles facilitate intercellular
lipid transport through receptor-mediated endocytosis
involving low-density lipoprotein receptor (LDLR)
and LDL receptor-related protein 1 (LRP1) (26). As an
important lipid carrier, the APOE4 isoform has abnormal
lipid metabolism properties, which leads to increased
levels of low-density lipoprotein cholesterol (LDL-C) and
decreased levels of high-density lipoprotein cholesterol
(HDL-C), thus promoting atherosclerosis and increasing
the risk of cardiovascular diseases (/9,27). Moreover,
APOE#e4 is an important risk factor for AD and cerebral
amyloid angiopathy because it affects lipid homeostasis
in the CNS, and APOFEe4 carriers exhibit poorer
outcomes following stroke and traumatic brain injury,
as well as accelerated motor progression and cognitive
decline in Parkinson's disease patients (28-37) (Figure
1A). Overall, APOE4 drives multisystem pathologies
through dysregulated lipid metabolism, contributing to
cardiovascular diseases, neurodegenerative disorders,
and poor neurological recovery, highlighting its central
role in disease mechanisms.

2.2. APOE4 and AD

The APOFEe4 allele represents the strongest genetic
risk factor for late-onset AD, with carriers facing an
increased risk of developing AD and often experiencing
an ecarlier age of onset (5,6,/6). The carrier rate of
APOE¢e4 in the general population is approximately
23.9%, with 2.1% APOEe4/e4, 20.6% APOEe3/e4, and
2.3% APOEeg2/e4 (32) (Figure 1A). Notably, nearly
all APOEe4 homozygote carriers display AD-related
pathologic features, making it crucial to explore the
relationship between APOEe4 and the risk of developing
AD (33). Epidemiological studies have demonstrated
that the prevalence of APOEe4-associated AD risk is
associated with racial and sexual dimorphism, with
East Asians having the highest susceptibility, followed
by non-Hispanic Whites, while non-Hispanic Blacks
and Hispanics have a lower risk, and female carriers
face a significantly greater risk than males do (34,35).
Additionally, genetic modifications complicate the
relationship between the APOEe4 allele and AD risk. For

instance, both Klotho-VS heterozygotes and 4APOFEg4-
R251G can attenuate the APOEg4-associated AD risk
(36-38). Specific single-nucleotide polymorphisms,
including rs10553596 in the CASP7 gene and rs4934-A/
A in the SERPINA39 gene, also reduce the high risk
of AD in APOEe4 heterozygotes (39). Strikingly,
comorbidities such as atherosclerosis, peripheral vascular
disease, and diabetes mellitus increase the risk of
cognitive decline in APOFEe4 carriers (40), suggesting
that managing cognition-related risk factors in APOE¢e4
carriers may represent a potential therapeutic approach.
Extensive mechanistic investigations have
substantiated the epidemiological evidence linking
APOE4 to AD pathogenesis. In the amyloid pathway,
APOE4 not only directly interacts with AP to promote
its deposition in the CNS and accelerates the conversion
of soluble AP to insoluble fibrils but also competitively
binds to receptors such as LDLR, significantly inhibiting
receptor-mediated AP clearance (47/-44). APOE4-related
blood-brain barrier (BBB) disruption also negatively
affects AP clearance and precedes neuronal dysfunction,
suggesting that vascular abnormalities may initiate
neurodegeneration (45,46). In a nonamyloid-dependent
pathway, APOE4 not only drives astrocytes and microglia
toward a proinflammatory phenotype, impairing their
immune function and exacerbating neuroinflammatory
responses but also induces mitochondrial dysfunction,
thereby impairing fatty acid oxidation (FAO) and
disrupting the energy supply of the brain (47-49). Most
importantly, APOE4 disrupts cholesterol and triglyceride
transport and metabolism, altering cellular membrane
lipid composition and inducing pathological lipid
droplet (LD) accumulation (50). These lipid metabolic
disturbances not only directly dysregulate A metabolism
but also impair endocytosis, lysosomal function, and
brain energy homeostasis while promoting oxidative
stress (57,52) (Figure 1B). In particular, an imbalance
in cholesterol homeostasis can affect the formation of
oligodendrocyte myelin, which in turn affects learning
and memory ability (53). Although APOE4 critically
contributes to AD progression through these multifaceted
lipid metabolic disturbances, the underlying mechanisms
exhibit cell-type specificity, which will be systematically
examined in the following cellular-level analysis.

3. Lipid metabolic disturbances in diverse cell types
mediated by APOE4

3.1. Astrocytes and neurons

Astrocytes serve as the primary source of APOE in
the CNS, with its expression modulated by CCAAT/
enhancer-binding protein § (C/EBP) and mitochondrial
function (54,55). While astrocyte-derived APOE
normally maintains lipid homeostasis, supports synaptic
pruning, and preserves the integrity of the BBB, APOE4
astrocytes exacerbate neurodegenerative processes
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through multiple synergistic pathways (56,57). Studies
have shown that APOE4 astrocytes exhibit profound
dysregulation of lipid metabolism, characterized by
aberrant sterol regulatory element-binding protein
2 (SREBP2) activation, which increases de novo
cholesterol synthesis despite lysosomal dysfunction-
induced accumulation (58). This metabolic imbalance
involves upregulated lipid metabolism genes but
downregulated transport genes, potentially mediated
by reduced peroxisome proliferator-activated receptor
v (PPARY) expression (9,56,59). This pathological
cholesterol accumulation disrupts lysosome-dependent
mitophagy, leading to mitochondrial dysfunction and
early AD energy deficits (52). In addition, APOE4
astrocytes also accumulate enlarged, oxidation-
prone LDs enriched with unsaturated triglycerides
while secreting poorly lipidated lipoproteins that
inefficiently support neuronal lipid demands, which
impairs synaptogenesis and neuronal viability (60-62).
In addition to these lipid metabolic disorders, APOE4
astrocytes upregulate glypican-4 (GPC-4) expression,
increase LRP1 membrane trafficking to promote tau
propagation and hyperphosphorylation, and impair
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APOE4-mediated miRNA transfer to neurons, thereby
disrupting neuronal metabolic and epigenetic regulation
and ultimately contributing to synaptic dysfunction and
memory deficits (63,64) (Figure 2A).

Neuronal APOE expression is increased during
stress and aging, exerting early detrimental effects on
synaptic function and neurodevelopment (65,66). At the
metabolic level, APOE4 significantly interferes with
neuronal function through lipid-dependent pathways.
Excessive binding of APOE4 to LDLR leads to increased
neuronal lipid uptake, resulting in lysosomal dysfunction,
lipofuscin accumulation, and impaired autophagy, which
subsequently triggers tau protein aggregation and brain
cell death (67). Concurrently, APOE4-expressing neurons
exhibit deficient fatty acid (FA) storage in LDs, leading
to the pathological accumulation of free FAs and an
increased risk of lipotoxicity (67). Although neighboring
astrocytes take up these lipids, APOE4 impairs their
transport and oxidation capacity, particularly in the
hippocampus (61,67). Furthermore, APOE4 promotes
ABCA1 degradation, reduces cholesterol efflux and
activates mTORC1-mediated senescence pathways,
ultimately impairing synaptic plasticity (68). Structurally,
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Figure 2. APOE4-mediated dysfunction of cellular lipid metabolism. (A). APOE4 astrocytes exhibit dysregulated lipid metabolism, characterized
by SREBP2 activation, de novo cholesterol synthesis, and PPARY suppression. Pathological cholesterol accumulation impairs mitophagy, leading to
mitochondrial dysfunction. Additionally, APOE4 astrocytes specifically upregulates GPC-4, enhancing LRP1-mediated tau propagation. (B). APOE4
is hydrolyzed by neuron-specific proteases, producing neurotoxic fragments that exacerbate tau pathology and activate microglia. Metabolically,
FAs are increased in APOE4 neurons, and hyperbinding of APOE4 to LDLR further increases lipid uptake in neurons, leading to lipid metabolism
disorders, triggering lysosomal dysfunction, lipofuscin accumulation, and impaired autophagy-mediated tau protein aggregation. C. APOE4
microglia exhibit diverse phenotypic features, including LDAM, DAM, phagocytosis and pro-inflammatory phenotype, MGnD and TIM. SREBP2,
sterol regulatory element-binding protein 2; GPC-4, glypican-4; FAs, fatty acids; LDAM, lipid-droplet-accumulating microglia; DAM, disease-
associated microglia; MGnD, neurodegenerative microglia; TIM, terminally inflammatory microglia.
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APOE4 undergoes neuron-specific proteolysis,
generating neurotoxic fragments that destabilize the
cytoskeleton and exacerbate tau pathology (69) (Figure
2B). APOE4 also selectively depletes GABAergic
neurons, potentially disrupting neural network balance,
while activating microglia through cell-nonautonomous
mechanisms to amplify neuroinflammation (70,71).
These findings establish that APOE4 links metabolic
dysregulation to neurodegenerative processes by
interfering with neuronal lipid homeostasis.

3.2. Microglia

Microglial APOE expression is significantly upregulated
in response to injury and inflammation, demonstrating
a close association with lipid metabolic dysregulation.
Under physiological conditions, microglia maintain
finely regulated lipid metabolic homeostasis, where
the dynamic equilibrium between fatty acid synthesis
(FAS) and FAO is essential for their immune
surveillance functions (/5). However, the APOFE€4
genotype disrupts this equilibrium, driving microglia
toward a dysfunctional, proinflammatory lipid droplet-
accumulating microglia (LDAM) phenotype (72,73).
Specifically, APOE4 promotes de novo lipogenesis
and LD accumulation by upregulating FAS while
simultaneously suppressing autophagy-related genes
to impair lipophagy (73,74). Additionally, APOE4
inhibits FAO via a dual mechanism — directly by
inducing mitochondrial structural and functional damage
that significantly reduces p-oxidation capacity, and
indirectly by promoting microglial polarization toward
a proinflammatory phenotype that downregulates
FAO-related gene expression (75,76). This "enhanced
synthesis-suppressed degradation" imbalance ultimately
leads to the formation of pathological LDAM. In
AD, microglia undergo dynamic lipid metabolic
reprogramming. During the early stages, the triggering
receptor expressed on myeloid cells 2 (TREM2)-APOE
pathway mediates lipid uptake and FAO to support
energy demands and facilitate AP clearance (77).
However, chronic exposure to AP and tau pathology
shifts the metabolism toward LD accumulation, resulting
in LDAM (73). At the energy metabolism level, APOE4
microglia exhibit significant mitochondrial dysfunction,
leading to reduced tricarboxylic acid cycle (TAC)
efficiency and impaired FAO, in addition to hypoxia-
inducible factor 1-a (HIF1a)-driven metabolic rewiring
from oxidative phosphorylation to glycolysis (78,79).
Intriguingly, a unique compensatory mechanism has
been identified in microglia. In the context of AD,
the expression of the glycolytic enzyme hexokinase 2
(HK2) is upregulated in microglia, and pharmacological
inhibition of HK2 can subsequently activate lipoprotein
lipase to increase lipid metabolism, thereby sustaining
ATP production and promoting AP clearance (80).
This glycolytic-lipid metabolic coupling appears to be

microglia specific, as it has not been observed in other
brain cells (80). These findings suggest that microglia
respond to pathological stimuli through dynamic
metabolic reprogramming mechanisms, but the APOFEe4
genotype drives microglia to a dysfunctional subtype by
disrupting lipid metabolic balance and energy supply,
ultimately exacerbating the neurodegenerative process.

As immune cells of the CNS, microglia can rapidly
move and migrate extensively to perform immune
surveillance and tissue repair functions. However, the
APOE¢e4 genotype significantly impairs these properties,
resulting in reduced microglial mobility and reactivity,
accompanied by marked morphological abnormalities
that ultimately impair their immune surveillance and
phagocytosis functions. Specifically, APOE4-expressing
microglia exhibit irregular structural features, including
enlarged cell bodies and nuclei, shortened processes,
and a flattened, discoid shape (9,81,82). Advances in
single-cell sequencing technology have further revealed
that microglia exhibit different subtypes, mediated by
the reprogramming of their cellular metabolism during
development, growth, and disease. Among these, the
LDAM subtype emerges as a canonical APOE4-driven
pathological subtype characterized by dysregulated
lipid metabolism, a proinflammatory state, and impaired
phagocytic function (72,73,81). Disease-associated
microglia (DAMs) exhibit high expression levels of
genes involved in lipid metabolism and phagocytosis.
APOE4-expressing microglia exhibit metabolic
features consistent with those of DAMs, with increased
aerobic glycolysis and Hifla expression but impaired
AP uptake (9,78). Moreover, a subset of microglia
enriched in phagocytic and proinflammatory genes has
been identified in APOFEe4 carriers, clustering around
neuroinflammatory plaques and driving the conversion
of microglia to phagocytic and proinflammatory
phenotypes via the APOE-TREM2-TYROBP axis
(83). In neurodegenerative diseases, the TREM2—
APOE pathway mediates the transition of microglia into
neurodegenerative microglia (MGnD), which exert a
neuroprotective effect by eliminating apoptotic neurons
(84). However, APOE4 exacerbates neurodegeneration
by activating ITGB8—TGEFP signaling, upregulating
the expression of homeostatic checkpoint molecules
such as Inpp5d, and inhibiting MGnD function (85).
Additionally, terminal inflammatory microglia (TIMs),
another APOE4-associated exhausted subtype, display
profound AP clearance deficits in both AD patients
and mouse models (86) (Figure 2C). In conclusion,
these findings demonstrate that APOE4 exacerbates
neurodegenerative progression through multiple
mechanisms, orchestrating the production of diverse
subtypes of dysfunctional microglia that exhibit
metabolic disturbances, inflammatory dysregulation, and
phagocytic impairment.

4. Microglial APOE4 and AD
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4.1. APOE4 in microglia exacerbates abnormal lipid
metabolism

AD was initially described by the identification of
numerous glial cells displaying lipid vacuoles in the brains
of patients, highlighting the significant role of abnormal
lipid metabolism in glial cells in the pathogenesis of
AD (87). In particular, abnormal lipid metabolism in
microglia not only exacerbates AP and tau pathology but
is also directly associated with cognitive impairment in
AD. Recent studies have shown that APOE4 induces
the phosphorylation of e[F2a in microglia, activates the
integrated stress response, and promotes the release of
harmful lipids and synaptic loss (88).

4.1.1. POE4 in microglia and intracellular lipid droplet
accumulation

The critical metabolic shift in the formation of microglial
LDs involves a decrease in free FAs and an increase
in triglycerides (89). This shift represents a defensive
response that maintains lipid homeostasis and neutralizes
lipid-mediated neurotoxicity by buffering excess free
FAs and cholesterol. However, the lipid homeostasis of
APOE4 microglia is often disrupted. Research has shown
that APOFE¢€4 carriers and their induced pluripotent
stem cell (iPSC)-derived microglia tend to accumulate
LDs. This phenomenon may be linked to the stress-
related responses promoted by microglial APOE4,
which downregulates complement and lysosomal
pathways, while excessive oxidative stress significantly
contributes to LD accumulation (87). Furthermore,
the binding of fibrillar AR to TREM2 receptors on the
surface of microglia activates the PI3K—Akt-mTOR
signaling pathway, leading to the overexpression of
LD-related genes, including ACSL1 and PLIN2. This
overexpression enhances triglyceride synthesis and
promotes LD formation, especially in patients with AD
carrying APOEeg4/e4 (73,90). Notably, the number of
LDs is negatively correlated with cognitive function
but positively correlated with the levels of AP plaques
and tau pathology, suggesting a role for LDs in AD
progression. ATAC-seq and RNA-seq analyses revealed
that enhancer regions in LD-rich APOE4 microglia are
highly enriched in protein upstream of .1 (PU.1) and
nuclear factor kappa-B (NF-kB) family factors. PU.1
regulates genes involved in LD formation, while NF-xB
increases proinflammatory gene expression and induces
the transformation of microglia into a proinflammatory
phenotype involved in neuroinflammation, disrupting the
neural microenvironment (73). LDAM often accumulate
near AP plaques, impair lysosomal function, affect
phagocytosis, and may accelerate the spread of plaques.
Moreover, excessive proinflammatory cytokines and
ROS are released, promoting neuronal lipogenesis.
Abnormally increased lipids can be transported to
microglia via APOE to synthesize LDs, thus forming

a vicious cycle (72) (Figure 3). Surprisingly, in AD
model mice, the accumulation of human iPSC-derived
microglial LDs largely depends on microglial reactivity
and proximity to plaques, which are impaired by the
TREM2-R47H mutation. Specifically, TREM2 R47H-
mutant microglia exhibited reduced LD accumulation in
vivo, decreased plaque reactivity, and decreased plaque-
associated APOE secretion, whereas the same mutation
exacerbated LD accumulation in vitro, highlighting the
critical regulatory role of the environmental context in
microglial function (917,92).

These findings highlight how APOE4 disrupts
the delicate balance of microglial lipid metabolism,
transforming a potentially protective LD formation
process into a maladaptive response that promotes AD
progression through impaired phagocytosis, sustained
neuroinflammation, and the creation of a neurotoxic lipid
microenvironment. The microenvironment-dependent
phenotypes observed in chimeric models further
emphasize the critical interplay between cell-intrinsic
metabolic reprogramming and the pathological brain
milieu in shaping microglial dysfunction (97).

4.1.2. APOE4 microglia and abnormal cholesterol
metabolism

Cholesterol is an indispensable lipid in cellular
membranes and is essential for maintaining membrane
fluidity and integrity (93). Numerous analyses of clinical
data have revealed abnormal cholesterol accumulation in
the cores of mature AP plaques, with elevated cholesterol
levels in the brain often associated with AD-related
cognitive decline and exacerbation of clinical symptoms.
In particular, dysregulated cholesterol metabolism in
microglia is thought to be a major driver of senescence
pathologies in AD (94,95). APOE, a cholesterol transport
protein, is vital for the survival and phagocytic function
of microglia. However, microglial APOE4 disrupts
cholesterol homeostasis and alters cholesterol transport-
related signaling pathways, impairing myelination
and subsequently affecting cognitive function (57,53).
Evidence indicates that cholesterol overload occurs in
APOE4 microglia, potentially because of increased
synthesis driven by the stress—ER Ca’*~SREBP2
pathway. Specifically, microglial APOE4 induces ER
stress, leading to Ca’" depletion in the ER and activation
of the SREBP2 transcription factor. This activation
promotes the transcription of key genes, such as HUGCR
and SQLE, which regulate the cholesterol biosynthesis
pathway (96). Furthermore, microglial APOE4 may
impair ABCAL1 recycling, lysosomal function, and
cholesterol efflux and metabolism, leading to the
accumulation of intracellular cholesterol that ultimately
reduces the capacity for AB degradation (57,97)
(Figure 3). In addition to AP clearance, cholesterol may
significantly influence AP plaque formation because of
its uneven distribution in the cell membrane, where it
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Figure 3. Microglial APOE4-mediated dysregulation of lipid metabolism in AD. Microglial APOE4-mediated upregulation of triglyceride
synthesis exacerbates the accumulation of LDs under AP stimulation, whereas TREM2-R47H reduces intracellular LDs accumulation. In addition,
microglial APOE4 promotes cholesterol synthesis via the ER stress-ER Ca’*-SREBP2 pathway and impairs cholesterol efflux, affecting Ap
degradation in lysosomes. The accumulation of extracellular cholesterol increased GIRK3 and decreased neuronal excitability. Microglial APOE4
also decreased lipid transport efficiency and disrupted lipid metabolic coupling in neurons. Ultimately, phagocytosis-impaired APOE4 microglia
release pro-inflammatory cytokines and ROS that promote neuronal lipogenesis and translocation to microglia, creating a vicious cycle. ACSL, acyl-
CoA synthetase long-chain; ER, endoplasmic reticulum; GIRK3, G protein-gated inwardly rectifying potassium channel 3; ROS, reactive oxygen
species; LDs, lipid droplets; TREM2, triggering receptor expressed on myeloid cells 2.

aggregates with sphingolipids and scaffolding proteins to
form lipid rafts. These rafts are involved in the cleavage
of amyloid precursor proteins and the generation of Ap
by a-, B-, and y-secretases. Disruption of cholesterol
homeostasis can lead to abnormal accumulation and
release of AP, promoting plaque formation (98,99).
Recent studies have demonstrated that using
LXR agonists, overexpressing ABCA1, or activating
TRPV1 can increase cholesterol efflux and reduce
the accumulation of cholesteryl esters in microglia,
thereby ameliorating APOE4-related neurodegeneration
(51,96,100). These findings suggest that APOE4 disrupts
cholesterol homeostasis in microglia through multiple
mechanisms, including enhanced cholesterol biosynthesis
via the ER stress pathway and impaired efflux via ABCA1
dysfunction. The resulting cholesterol overload not only
impairs AP clearance and promotes plaque formation,
but also contributes to broader neurodegenerative
processes by disrupting myelin integrity and synaptic

function. Importantly, therapeutic strategies targeting
cholesterol metabolism have shown promise in alleviating
APOE4-driven pathology, highlighting the central
role of cholesterol dysregulation in AD pathogenesis
(51,68,96,100).

4.1.3. APOE4-mediated dysregulation of lipid metabolism
in microglia disrupts communication between neurons and
microglia

Microglia serve as sentinels in the neural network, and
their interactions with neurons are regulated by a complex
array of intercellular signaling mechanisms, including
purinergic signaling, cytokines, neurotransmitters,
and neuropeptides (/01,102). However, APOE4 alters
purinergic signaling and lipid metabolism in microglia,
which in turn affects their communication with neurons. It
has been demonstrated that APOE4 induces a pronounced
accumulation of LDs in microglia, which not only
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impairs their phagocytosis and clearance of pathological
proteins but also disrupts their interactions with neurons
(8,72,103). Mechanistic studies revealed that APOE4
drives these pathological processes through multiple
convergent pathways. It compromises the lipid uptake
efficiency of microglia, leading to extracellular lipid
accumulation and enhanced proinflammatory signaling,
ultimately attenuating their ability to monitor neuronal
network activity — a phenomenon closely aligned with
the aberrant neural network activity observed in AD
patients. In addition, APOE4 shifts microglial energy
metabolism from oxidative phosphorylation toward
glycolysis, further exacerbating intracellular lipid
accumulation (/03,104). This metabolic dysregulation
triggers a cascade of pathological consequences. The
most immediate manifestation is impaired lipid reuptake
by APOE4 microglia, resulting in extracellular cholesterol
accumulation that induces significant hyperpolarization of
neuronal resting membrane potentials and upregulation of
G protein-coupled inwardly rectifying potassium channels
(GIRK3), collectively reducing neuronal excitability
(103) (Figure 3). More critically, LDAM secrete toxic
factors that not only promote abnormal p-tau deposition
in neurons but also activate apoptotic pathways (73).
Concurrently, proinflammatory cytokines released by
LDAM drive intracellular LD accumulation in neurons,
exacerbating neuronal damage. Interestingly, neurons
are not passive recipients but actively regulate microglial
lipid metabolism through AMPK-mediated suppression
of lipogenesis and activation of lipophagy, thereby
modulating lipid flux to microglia and demonstrating a
sophisticated bidirectional regulatory mechanism (705).

These findings provide novel insights into the
pathogenesis of neurodegenerative diseases. APOE4
disrupts metabolic coupling between neurons and
microglia by impairing microglial lipid transport capacity,
which is characterized by decreased APOE-containing
lipoprotein particles and reduced lipidation levels,
ultimately leading to neural network dysfunction (/06).
Building upon this understanding, current research is
focused on developing innovative therapeutic strategies
to increase APOE4-mediated lipid transport efficiency.
By restoring metabolic homeostasis and restoring neural
network stability, these interventions represent promising
avenues for AD treatment.

4.2. Microglial APOE4 promotes neuroinflammation

Neuronal death caused by neuroinflammation in AD
is far greater than that caused by AP plaques and
NFTs, establishing neuroinflammation as a hallmark
pathological feature of AD (/07-110). Microglia, the
central orchestrators of this inflammatory cascade, release
a plethora of cytokines, including tumor necrosis factor
o (TNF-a) and interleukin 1B (IL-1pB), which are crucial
for modulating the inflammatory cascade. Importantly,
microglial APOE4 has a bidirectional interaction between

lipid metabolism disorders and neuroinflammation:
it both directly activates inflammatory pathways and
aggravates neuroinflammation by disrupting lipid
homeostasis (72,73,75,111).

First, microglial APOE4 directly activates
inflammatory pathways through multiple mechanisms.
Zhou et al. reported that APOE4 binds to LilrB3 on the
surface of microglia to upregulate the expression of
relevant type I interferon-stimulating genes, including
IFITM3, BST2, MX1, ISG15, and STAT1. This transition
drives microglia to enter a proinflammatory state,
hinders their phagocytic function, and contributes
to AP deposition (75). In addition to this receptor-
mediated pathway, APOE4 also intrinsically primes
microglia toward inflammation. In the basal state,
APOE4-expressing microglia exhibit an obvious
proinflammatory effect, which manifests as increased
activation of the NLRP3 inflammasome and excessive
production of reactive oxygen species (ROS), leading
to cellular immune dysfunction. This proinflammatory
phenotype is further exacerbated by immune stimulation
such as lipopolysaccharide (LPS) and interferon-gamma
(IFN-y), which promote the secretion of inflammatory
factors such as TNF-q, IL-1p, NOS2 and MCP1 in large
amounts, especially in female mice. More importantly,
microglial nAPOE,, 5, significantly increases the
expression of the proinflammatory cytokine TNF-a by
inhibiting Cxorf56, thus leading to the formation of a
full-spectrum inflammatory amplifying pathway from
the basal state to the immune-activated state (//2-114).
All of the above findings indicate that microglial APOE4
activates neuroinflammation and affects microglial
function. Second, APOE4-induced lipid dysregulation
further amplifies this inflammatory response. Metabolic
reprogramming of APOE4-expressing microglia
enhances glycolysis, inhibits TAC, and directs carbon
flux toward lipid synthesis (78). This results in the
accumulation of pathological LDs and increased
release of proinflammatory lipid mediators, including
prostaglandins and arachidonic acid metabolites,
activating neuroinflammatory pathways (78). Moreover,
lipid peroxides and cholesterol accumulated by
APOE4 microglia activate the NF-kB signaling axis,
creating a self-reinforcing cycle of cytokine production
and metabolic dysfunction (73). On the other hand,
accumulated lipids enhance Major Histocompatibility
Complex Class II (MHC-II)-dependent antigen
presentation, thereby hyperactivating T cells and
contributing to neuroinflammation (/00). It has also been
reported that APOE4 microglia secrete more oxysterol
25-hydroxycholesterol (25-HC) and IL-1f following LPS
treatment, with 25-HC further significantly increasing
IL-1P secretion; these findings highlight a lipid-driven
mechanism through which APOE4 sustains chronic
neuroinflammation (//7) (Figure 4A). Collectively,
APOE4 microglia-mediated lipid metabolism
disturbances trigger cell membrane dysfunction
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and the release of inflammatory mediators, which
activate microglia while impairing their AP clearance
capacity, ultimately promoting neuronal apoptosis. The
accumulation of AP deposits and inflammation further
exacerbate lipid metabolic dysregulation, creating a
spatially specific self-reinforcing cycle. This bidirectional
crosstalk mechanism reveals how APOE4 promotes
neurodegenerative progression through "metabolism-
inflammation" interplay.

Notably, therapeutic strategies targeting this
lipid-inflammation axis have shown promising
neuroprotective effects. Pharmacological agents such
as acyl-CoA cholesterol Acyltransferase (ACAT)
inhibitors demonstrate dual functionality by enhancing
cholesterol efflux while concurrently suppressing NF-
kB-mediated cytokine release (/75). This metabolic
reprogramming attenuates both neuroinflammation and
lipid accumulation, effectively breaking the vicious cycle
that drives disease progression.

4.3. Microglial APOE4 inhibits the clearance of
pathological proteins

Microglial phagocytosis plays a pivotal role in
maintaining CNS homeostasis by eliminating
neurotoxic substances, including AP and p-tau, and
participating in neural circuit remodeling. However,
the APOFEe4 genotype substantially impairs this critical
function through multifaceted mechanisms during
AD pathogenesis. Under physiological conditions, the
TREM2-dependent lipid metabolic network coordinates
cholesterol efflux through the LXR/PPARYy pathway,
maintains phago-lysosomal cycling, and activates
microglia to phagocytose diffuse AP, compressing it
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into dense AP plaques that are less toxic and prevent its
further spread in the brain (44,116,117).

The presence of APOE4 disrupts this sophisticated
regulation through several interconnected pathways. It
induces mitochondrial dysfunction while simultaneously
compromising pseudopod extension capacity because
of altered membrane fluidity from abnormal lipid
accumulation, coupled with downregulated TREM2
expression, collectively impairing phagocytic capacity
(74,118). Furthermore, APOE4 increases the likelihood
of forming fibrillar aggregates within microglia that
serve as nucleation sites for AP plaque formation and
specifically suppresses Af,, clearance by disrupting
ITGB8-TGFp signaling, as demonstrated by animal
studies showing that selective ablation of microglial
APOE4 expression restores their phagocytic function
and markedly reduces the plaque burden (42,85).
Interestingly, in female AD patients carrying APOFE¢4,
APOE4-expressing neutrophils upregulate the expression
of IL-17F, which interacts with microglial IL-17RA to
disrupt AP clearance, ultimately impacting cognitive
function. Interrupting the IL-17F/IL-17RA signaling
pathway ameliorates cognitive deficits and reduces Ap
deposition in AD (//9) (Figure 4B). These findings
systematically elucidate how APOE4 synergistically
impairs microglial phagocytosis through multiple
mechanisms such as lipid metabolism disorders to affect
AP pathology.

Microglial phagocytosis also contributes to the
propagation of tau pathology. In general, reactive
microglia exert neuroprotective effects by actively
engulfing tau proteins and tau-laden synapses and
neurons for clearance (/20). However, APOE4
fundamentally alters this homeostatic mechanism by
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Figure 4. Microglial APOE4 promotes neuroinflammation and inhibits the clearance of pathological proteins in AD. (A). Microglial
APOE4 promotes neuroinflammation by interacting with LilrB3 to upregulate ISGs, or inhibiting Cxorf56 to enhance TNF-a secretion in AD.
In addition, NLRP3 inflammasomes and ROS were increased in APOE4 microglia, and more inflammatory factors were secreted in response to
LPS and IFN-y stimulation, further confirming the involvement of APOE4 in microglia-mediated neuroinflammation. (B). Upper part: APOE
accumulates around AP plaques, compacting diffuse AP into less toxic core plaques and restricting their dissemination within the brain. Lower
part: microglial APOE4 inhibits AB clearance, promotes AP plaque formation, reduces tau degradation, and facilitates tau spread via exosomes.
Meanwhile, APOE4 microglia enhance synaptic phagocytosis near A plaques, correlating with cognitive decline. ISGs, interferon-stimulating

genes; LPS, lipopolysaccharide; IFN-y, interferon-gamma.
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initiating a cascade of pathological events. APOE4-
driven lipid metabolic dysregulation induces intracellular
LD accumulation, which compromises plasma
membrane integrity and severely impairs endosomal—
lysosomal system functionality (/5,68,121). This
organelle dysfunction directly attenuates the processing
and degradation capacity of tau proteins, leading to
abnormal intracellular accumulation of p-tau (57). The
accumulated pathological p-tau subsequently undergoes
exosome-mediated release, thereby facilitating its
intercellular propagation (51,122). Neuroimaging studies
have consistently demonstrated significantly enhanced
p-tau accumulation in APOE4 carriers, while the
ameliorative effects of the APOE4-R136S homozygous
mutation on tau pathology provide compelling genetic
evidence for the pivotal role of APOE4 in regulating tau
protein metabolism (/23,124). In particular, aggregates
of AP and tau near synapses have been shown to recruit
microglia to phagocytose pathological synapses, thereby
exacerbating synaptic dysfunction in AD. Increased
phagocytosis of synapses by microglia was observed
in the brains of AD patients carrying APOFEe4, which
was particularly pronounced near AP plaques (/25,126)
(Figure 4B). Reactivation of transient receptor potential
vanilloid 1 (TRPV1) has been shown to ameliorate
cerebral lipid metabolic dysregulation, reduce LD
accumulation, and attenuate microglial synaptic pruning,
thereby ameliorating tau pathology and memory
impairment (96,100). These findings reveal that APOE4

not only aggravates the impairment of AP/tau clearance,
but also actively promotes pathological protein
propagation and synaptic damage through dysregulation
of the metabolism—phagocytosis pathway, suggesting
that targeting the lipid metabolic reprogramming of
APOE4 microglia may be a key strategy to attenuate AD
progression.

APOE4 exacerbates AD progression through
multifaceted mechanisms that disrupt microglial lipid
homeostasis, thereby affecting neuroinflammation and
the clearance of pathological proteins (/27,128). APOE4-
induced lipid metabolic dysregulation and mitochondrial
dysfunction impair lysosomal degradation capacity,
significantly compromising the clearance of AB and tau
aggregates by microglia (74). Concurrently, aberrant lipid
metabolism activates inflammatory signaling pathways,
promoting excessive secretion of proinflammatory
factors and establishing a persistent neuroinflammatory
microenvironment. This inflammatory cascade further
disrupts microglial function, ultimately resulting in
neuronal death. These pathological alterations mutually
reinforce each other, establishing a vicious cycle of "lipid
metabolic dysregulation—neuroinflammation—functional
impairment" (/4,15,72,73,78,100,111). Consequently,
therapeutic strategies targeting APOE4-mediated
microglial lipid metabolic pathways, simultaneously
suppressing inflammatory responses and restoring
phagocytic function, may offer novel intervention
approaches for AD treatment.
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5. Promising therapeutic strategies targeting
microglial APOE4

Despite decades of research into treatments for AD,
the therapeutic landscape remains limited. This review
summarizes advances in microglia- and APOE4-related
AD therapy (Table 1). In terms of metabolic regulation,
lipid metabolism disorders can be alleviated by inhibition
of cholesterol synthesis by TRPV1, promotion of
cholesterol efflux by an LXR agonist (CS-6253), or
enhancement of APOE4 lipidation by an RXR agonist
(bexarotene) (96,100,129-131). Notably, pharmacological
inhibition of diacylglycerol O-acyltransferase 2
(DGAT2) in microglia has been demonstrated to
suppress triglyceride biosynthesis and subsequent LD
accumulation, whereas genetic ablation of perilipin
2 (PLIN2) promotes LD degradation and attenuates
neuroinflammation (/32,133). These results suggest that
targeting lipid metabolism is a promising therapeutic
strategy for ameliorating pathological progression in AD.
In the context of neuroinflammation, dimethyl malonate
(DMM) reduces HIFla expression in the microglia
of AD model mice, promotes an anti-inflammatory
phenotype, and attenuates neuroinflammation (/34).
Given that microglial APOE4 is associated with the
upregulation of the NLRP3 inflammasome, modulation
of the NLRP3 inflammasome is also a viable option to
mitigate neuroinflammation (//4). NLRP3 inhibitors,
such as JC-124, dihydromyricetin (DHM), DAPPD, and
dapansutrile (OLT1177), have shown potential in curbing
neuroinflammation and enhancing AP clearance (/35-
138). Additionally, the ubiquitin ligase COP1 is another
target for AD therapy because it modulates CEBP
levels and attenuates proinflammatory gene expression
in microglia (/39). Strikingly, traditional herbal
compounds, such as resveratrol and curcumin, have
demonstrated the ability to inhibit microglia-associated
neuroinflammation as potential therapeutic agents (/40-
142). The interaction between lipid metabolism and
neuroinflammation is ultimately reflected in microglial
dysfunction. For example, rutin sodium (NaR) and the
5-HT2A receptor antagonist desloratadine increase
the expression of phagocytic receptors on the surface
of microglia, and NaR promotes a shift in oxidative
phosphorylation to generate the ATP required for
efficient AP clearance (/43,144). Furthermore, the
AMPKal activator DW 14006, and the TREM2 activator
AL002¢c (NCT03635047, NCT04592874) have been
shown to increase microglial phagocytosis of Ap (/45-
148). Although some progress has been made in the
study of microglial dysfunction as a therapeutic target for
AD in animal models and at the cellular level, translating
these findings into effective therapies in humans remains
challenging.

Therapeutic strategies targeting the APOEe4 allele
have also been important focuses in AD research. Studies
have reported that small-molecule mimetics such as Af,,.

,sp and the APOE mimic CN-105 reduce AP plaques
and tau pathology by disrupting the interaction between
APOE4 and AP (/49-151). Recent research underscores
the significant benefits of reducing APOE4 levels in
AD. In a mouse model expressing human APOE4,
immunotherapy with the anti-human APOE antibody
HAE-4 has been shown to decrease the number of A
plaques and tau protein while inhibiting the expression
of proinflammatory genes (/52,153). Moreover, another
promising approach involves the delivery of the human
APOEg2 gene via adeno-associated virus (AAV), which
has been shown to prevent or even reverse the deleterious
effects of APOE4 on brain amyloid pathology, with
intracisternal delivery being the most effective method
(154,155). LX1001, a drug targeting the APOE¢e4 allele,
has recently completed testing in phase I/II clinical trials.
They have reported positive results regarding a dose-
dependent increase in APOE2 protein expression and
reductions in disease-associated tau protein biomarkers
(156,157). The advent of CRISPR-Cas9 gene editing
technology offers the potential to convert APOE4 to
other isoforms, although this approach is accompanied
by technical, ethical, and safety challenges (9,158).

Despite growing interest in microglial dysfunction
and APOE4 as therapeutic targets for AD, no effective
drugs currently exist to specifically correct APOE4-
driven lipid metabolic abnormalities in microglia.
Emerging evidence suggests that APOE4 exerts cell-
type-specific pathogenic effects and that intervening
with APOE4 in specific cell types can yield more
precise results while alleviating the potentially toxic side
effects associated with full-scale interventions targeting
APOE4 (159). The critical role of microglial APOE4
in AD underscores its significance as a research focus,
and future studies may provide breakthroughs in the
treatment of AD.

6. Conclusion

AD is a progressive neurodegenerative disorder with
complex pathogenic mechanisms. The APOFE¢4 allele,
the most significant genetic risk factor for AD, primarily
mediates its pathological effects through microglial
dysfunction, in which dysregulated lipid metabolism
emerges as a pivotal pathogenic driver. Increasing
evidence indicates that APOFEe¢4 disrupts microglial
lipid homeostasis by impairing cholesterol efflux and
promoting excessive LD formation, consequently
(1) inducing proinflammatory cytokine secretion to
activate microglia and aggravate neuroinflammation;
(2) impairing phagocytic function by hindering energy
metabolism, membrane fluidity and lysosomal activity;
and (3) disrupting neuron—microglia crosstalk through
lipid-mediated signaling pathways. The activation
of neuroinflammation further aggravates abnormal
lipid metabolism and affects the immune function of
microglia. This pathogenic triad — lipid dysregulation,
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sustained neuroinflammation and impaired phagocytosis
— forms a self-perpetuating cycle that exacerbates AD
progression. Current therapeutic strategies for this axis
include restoring the homeostasis of lipid metabolism
in microglia, reducing neuroinflammation, enhancing
immune phagocytosis by microglia, and reducing the
expression of APOE4. Future research should aim to
elucidate the molecular mechanisms underlying APOE4-
mediated lipid metabolism disorders in microglia,
develop lipidomic signatures as predictive biomarkers
for APOE4-targeted interventions, and design integrated
treatment approaches that synergistically address
multiple pathological cascades in AD.
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