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1. Introduction

Colorectal liver metastasis (CRLM) remains a major 
clinical challenge, as colorectal cancer (CRC) is the 
second leading cause of cancer-related mortality 
globally, and the liver is the primary site of metastasis. 
CRLM occurs in 20–50% of patients with Colorectal 
Cancer (CRC), with a 5-year survival rate of 10–30%, 
depending on the resectability of metastases (1). Current 
treatment options include surgical resection, systemic 
chemotherapy, radiation therapy, and ablation therapy; 
however, only a minority of patients are eligible for 
curative resection (2). Immunotherapy has emerged 
as a promising therapeutic approach, particularly 
when combined with local therapies. Nonetheless, 
prognosis remains poor, underscoring the need for novel 
biomarkers to improve prognostic accuracy and guide 
personalized treatment strategies.

	 Cellular senescence is an irreversible cell cycle 
arrest triggered by stressors, such as DNA damage and 
oxidative stress (3). It is characterized by enlarged cell 
size, expression of cell cycle inhibitors (e.g., p16 and 
p21), and a senescence-associated secretory phenotype 
(SASP), which includes pro-inflammatory cytokines 
and extracellular matrix (ECM) remodeling proteins (4). 
Senescence can act as a tumor suppressor by halting the 
proliferation of damaged cells (5); however, SASP can 
also promote tumor progression by altering the tumor 
microenvironment (6). Metabolic reprogramming, which 
involves adaptive changes in the cellular metabolism 
that support rapid proliferation, is a hallmark of cancer 
cells (7). In CRLM, metabolic reprogramming enables 
cancer cells to adapt to the liver microenvironment, 
facilitating metastatic colonization (8,9). The interplay 
between senescence and metabolic reprogramming in 
CRLM is complex, with senescent cells potentially 
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SUMMARY: Colorectal liver metastasis (CRLM) remains lethal, and the convergence of cellular senescence with 
metabolic reprogramming via epigenomic rewiring is poorly understood. We integrated genome-wide DNA methylation 
and RNA-seq data from 10 paired primary tumors and liver metastases (GSE213402). After calling differentially 
methylated genes (3,399 hyper- and 9,519 hypomethylated) and differentially expressed genes (406 DEGs), we 
intersected them with curated senescence (n = 866) and metabolic reprogramming (n = 948) gene sets, yielding 28 
differentially expressed cellular-senescence-related genes (DE-CSRGs) and 24 metabolic-reprogramming-related 
genes (DE-MRRGs). Machine-learning pipelines (LASSO + SVM-RFE) converged on a five-gene signature: CXCL1, 
SERPINE1, NDRG1, SRM and GATM, most of which are hypomethylated and over-expressed in metastases. Gene-
set enrichment analysis revealed that these genes are involved in pathways such as oxidative phosphorylation, focal 
adhesion, complement–coagulation cascades, and PPAR signaling. Immune de-convolution revealed strong positive 
correlations between signature genes and immunosuppressive subsets (MDSCs, Tregs, type-1 T-helper cells; p < 0.05). 
Elevated IC50 values for oxaliplatin and 5-fluorouracil in metastatic samples were positively associated with NDRG1 
and negatively with SRM, indicating chemo-resistance modulation. This five-gene epigenetic–transcriptomic hub 
identifies a molecular signature that warrants prospective validation as a potential biomarker for patient stratification 
and combination therapy in CRLM.
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inducing metabolic changes in neighboring cells, and 
metabolic alterations reciprocally influencing senescent 
phenotypes. Identifying biomarkers associated with these 
processes is crucial for elucidating the pathogenesis of 
CRLM and may provide novel therapeutic targets.
	 In this study, we utilized publicly available 
methylation and transcriptomic data on CRLM to 
investigate the crucial roles and prognostic value of 
genes related to cellular senescence and metabolic 
reprogramming in disease progression, employing 
bioinformatic techniques. We further investigated 
potential molecular regulatory mechanisms and drug 
responses associated with these genes. Our findings 
provide novel theoretical support and a valuable 
reference for clinical research and prognostic evaluation 
in CRLM.

2. Materials and Methods

2.1. Sample collection and RNA-sequencing

Fresh tissue samples, including primary colorectal 
tumors and matched liver metastases, were collected 
from patients diagnosed with CRC at HuaShan Hospital 
between 2014 and 2020. All samples were obtained 
immediately following surgical resection, snap-frozen 
in liquid nitrogen, and stored at –80 °C until further 
processing. All clinical samples were collected after 
obtaining informed consent and in accordance with a 
protocol approved by the Ethics Committee of Huashan 
Hospital, Fudan University (Shanghai, China). All 
clinical samples were collected from patients after 
obtaining informed consent in accordance with a protocol 
approved by the Ethics Committee of Huashan hospital, 
Fudan University (Shanghai, China).

2.2. Data source

RNA sequencing data and clinical information were 
obtained from the TCGA database via UCSC Xena 
(http://xena.ucsc.edu/). TCGA-COAD and TCGA-READ 
data were merged to generate a TCGA-CRC dataset, and 
only samples with available survival information were 
retained. Ultimately, 607 tumor samples and 51 normal 
samples from the TCGA were used for prognostic 
analysis. The transcriptome and DNA methylation data 
of 10 paired primary tumors and liver metastases from 10 
patients with CRC were sourced from the GSE213402 
dataset in the GEO database to screen for metastasis-
related genes. In total, 866 cellular senescence-related 
genes (CSRGs) were obtained from the CellAge database 
(https://genomics.senescence.=cells/), and 948 metabolic 
reprogramming-related genes (MRRGs) were identified 
from a literature search (10).

2.3. Identification of methylated genes involved in 
metastasis

First, we identified differentially methylated CpGs 
(DMCs) between liver metastasis and primary tumor 
groups using thresholds of p-value < 0.05 and |Δβ| 
> 0.2 and investigated the distribution of DMCs 
across different CpG regions. Next, we mapped 
CpG sites to their corresponding genes to identify 
the methylated genes involved in metastasis. Genes 
were classified into distinct methylation states based 
on the ratio of hypermethylated to hypomethylated 
CpGs, using a 1.5-fold threshold. Specifically, genes 
with a hypermethylated/hypomethylated CpG ratio ≥ 
1.5 were defined as hypermethylated, and those with 
a hypomethylated/hypermethylated ratio ≥1.5 were 
defined as hypomethylated. To analyze the biological 
pathways associated with methylated genes, functional 
enrichment analysis was conducted using the R package 
"clusterProfiler."

2.4. Identification of differentially methylated CSRGs 
and MRRGs

We used the DESeq2 package to identify differentially 
expressed genes (DEGs) between the liver metastasis 
and primary tumor groups, with a false discovery 
rate (FDR) Padj < 0.05 and |log2FC| > 1. To identify 
differentially expressed cellular senescence-related genes 
(DECSRGs) and metabolic reprogramming-related genes 
(DEMRRGs), we performed an overlap analysis among 
DEGs, 866 CSRGs, and 948 MRRGs. Differentially 
methylated cellular senescence-related genes (DM-
CSRGs) were identified through intersection analysis 
of (i) hypermethylated genes with downregulated 
DECSRGs, and (ii) hypomethylated genes with 
upregulated DECSRGs. Similarly, differentially 
methylated metabolic reprogramming genes (DM-
MRRGs) were derived from the intersections of (i) 
hypermethylated genes and downregulated DEMRRGs, 
and (ii) hypomethylated genes and upregulated 
DEMRRGs. Spearman's correlation analysis was 
conducted on DM-CSRGs and DM-MRRGs to evaluate 
their association. Correlated DM-CSRGs and DM-
MRRGs were screened based on a threshold of p < 0.05 
and |cor| > 0.3.

2.5. Machine learning

To identify key genes, two machine learning algorithms, 
support vector machine-recursive feature elimination 
(SVM-RFE) and least absolute shrinkage and selection 
operator (LASSO), were employed. Initially, we utilized 
the 'glmnet' package in R for LASSO analysis, which 
selects key genes from a set of candidate genes through 
binomial logistic regression. Subsequently, the SVM 
package was employed to implement the SVM-RFE 
model using a 10-fold cross-validation strategy. Key 
CSRGs and MRRGs were identified by overlapping the 
feature genes obtained from LASSO and SVM-RFE.
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chromosomes revealed that the majority of DMCs were 
hypomethylated (Figure 1B). Moreover, the proportions 
of hypomethylation in CpG island core, CpG island 
shelf, and CpG island shores were 53.7%, 67.5%, and 
62.8%, respectively, exceeding the corresponding 
proportions of hypermethylation (Figure 1C). Based on 
the CpG sites, 3,399 hypermethylated genes and 9,519 
hypomethylated genes were identified. The enrichment 
results of Gene Ontology showed that genes were 
associated with biological processes such as embryonic 
organ development, axonogenesis, synapse organization, 
cellular components related to synaptic membrane, 
neuronal cell body, glutamatergic synapse, and molecular 
functions such as GTPase regulator activity, DNA-
binding transcription activator activity, and phospholipid 
binding (Figure 1D). Kyoto Encyclopedia of Genes 
and Genomes analysis revealed that these genes were 
involved in the PI3K-Akt signaling pathway, human 
papillomavirus infection, MAPK signaling pathway, 
gastric cancer, breast cancer, and ECM-receptor 
interaction (Figure 1E).

3.2. Identification of DM-CSRGs and DM-MRRGs

We identified 406 DEGs between the liver metastasis 
and primary tumor groups, including 250 upregulated 
and 156 downregulated genes in the primary tumor 
group (Figure 2A). By overlapping the 866 CSRGs and 
948 MRRGs, 28 DECSRGs and 24 DEMRRGs were 
identified (Figure 2B). Eight DM-CSRGs (CXCL1, 
NDRG1, SERPINE1, WSB1, CCL2, EGR2, XAF1, and 
VCAN) and seven DM-MRRGs (IL4I1, DPYD, ALOX5, 
CYP1B1, HNMT, SRM, and GATM) were identified 
(Figure 2C). Among these, CXCL1 and SRM were 
hypermethylated, whereas NDRG1, SERPINE1, WSB1, 
CCL2, EGR2, XAF1, VCAN, IL4I1, DPYD, ALOX5, 
CYP1B1, HNMT, and GATM were hypomethylated. We 
observed multiple correlations among these genes; SRM 
exhibited a strong positive correlation with CXCL1 (r = 
0.71). SERPINE1 positively correlated with DPYD (r = 
0.60), ALOX5 (r = 0.58), and CYP1B1 (r = 0.64). CCL2 
expression was positively associated with the expression 
of IL4I1 (r = 0.60), DPYD (r = 0.90), ALOX5 (r = 0.58), 
and CYP1B1 (r = 0.88). VCAN also positively correlated 
with IL4I1 (r = 0.59), DPYD (r = 0.63), ALOX5 (r = 
0.62), and CYP1B1 (r = 0.78). Conversely, a negative 
correlation was detected between CXCL1 and HNMT (r 
= -0.56) (Figure 2D).
	 In the GSE213402 dataset, the expression levels of 
GATM, NDRG1, and SERPINE1 were elevated, whereas 
those of CXCL1 and SRM were reduced in the liver 
metastasis group compared with those in the primary 
tumor group (Figure 3A). The expression patterns of 
these genes were consistent with the sequencing data 
(Figure 3B). Additionally, the expression levels of 
CXCL1, SERPINE1, and SRM were upregulated, whereas 
those of GATM and NDRG1 were downregulated in 

2.6. Characterization of key genes

First, we analyzed the expression levels of key genes in 
the primary tumors and liver metastases. Subsequently, 
to investigate the prognostic value of the key genes in 
CRC, we divided TCGA-CRC samples into high- and 
low-expression groups based on the median expression 
levels of the key genes, followed by Kaplan–Meier (KM) 
survival analysis. Gene set enrichment analysis (GSEA) 
was performed to investigate the functions of key genes 
using c2.cp.kegg.v7.5.1.symbols.gmt gene set as the 
reference. Subcellular localization analysis of key genes 
was performed using Cell-Ploc 2.0.

2.7. Analysis of immune microenvironment and drug 
sensitivity

The infiltration of 28 immune cell types, including 
B cell memory, eosinophil, macrophage, mast cell, 
monocyte, neutrophil, NK cell, effector memory CD4 
T cell, effector memory CD8 T cell, activated CD4 T 
cell, activated CD8 T cell, T cell follicular helper, T 
cell gamma delta, T cell regulatory, activated B cell, 
activated dendritic cell, CD56bright natural killer cell, 
CD56dim natural killer cell, central memory CD4 T cell, 
central memory CD8 T cell, immature B cell, immature 
dendritic cell, MDSC, natural killer T cell, plasmacytoid 
dendritic cell, T cell helper cell type 1, T cell helper cell 
type 2, and T cell helper cell type 17 were compared 
between liver metastasis and primary tumor groups. 
Additionally, the half-maximal inhibitory concentration 
(IC50) values of irinotecan (1088), oxaliplatin (1089), 
and 5-fluorouracil (1073) were calculated using the 
"oncoPredict" R package to assess the drug sensitivity of 
patients with primary tumor and liver metastasis.

2.8. Statistical analysis

A regulatory network was constructed using Cytoscape 
(version 3.9.1). All statistical results were analyzed using 
R (version 4.4.0). KM curves and log-rank tests were 
used to visualize and test the survival differences among 
the different groups. Differences in the continuous 
variables between the two groups were examined using 
the Wilcoxon test. A p-value < 0.05, unless otherwise 
specified, was considered statistically significant.

3. Results

3.1. Analysis of the landscape of methylation in the 
metastasis of CRC

We performed differential methylation analysis and 
identified 98,858 DMCs between the liver metastasis and 
primary tumor groups, including 31,883 hypermethylated 
and 66,975 hypomethylated sites (Figure 1A). The 
genomic distribution of these DMCs across the 24 
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the tumor group compared with those in the control 
group (Figure 3C). The expression trends of GATM, 
SRM, CXCL1, and NDRG1 were consistent with our 
sequencing data (Figure 3D). Furthermore, KM curves 
were plotted for the five genes, and significant survival 
differences were observed for CXCL1 (p = 0.031) 
and GATM (p = 0.038), indicating their potential as 
prognostic biomarkers (Figure 3E). We performed 
GSEA to gain a deeper understanding of the potential 
mechanisms and found that NDRG1 and SERPINE1 

were associated with ECM-receptor interaction, focal 
adhesion, Leishmania infection, lysosome, complement, 
and coagulation cascades. GATM and SRM were related 
to ribosomes, Huntington's disease, Parkinson's disease, 
and oxidative phosphorylation (OXPHOS), while 
CXCL1 was associated with the PPAR signaling pathway 
(Figure 4A-4E).

3.3. Machine learning identified five key cellular 
senescence-metabolic genes

Figure 1. Genome-wide methylation landscape distinguishing colorectal liver metastasis from primary tumors. (A) Volcano plot of 98,858 
differentially methylated CpG sites (DMCs; |Δβ| > 0.2 and p < 0.05) between liver metastasis and primary tumor samples in the GSE213402 cohort. 
Hypermethylated probes (n = 31,883) are shown in red; hypomethylated probes (n = 66,975) are shown in blue. (B) Bar chart showing the number of 
hypermethylated (red bars) and hypomethylated (blue bars) DMCs across the 24 human chromosomes. (C) Proportional distribution of DMCs within 
CpG-island sub-regions: CpG-island core, shore and shelf. Hypomethylation predominates in all three compartments (53.7 %, 62.8 % and 67.5 %, 
respectively). (D) Top Gene Ontology (GO) biological-process and molecular-function terms enriched among genes harbouring metastasis-associated 
DMCs. Bars represent –log10 (adjusted p value); the dashed vertical line indicates adjusted p = 0.05. (E) KEGG pathway enrichment bubble chart 
for the same gene set. Bubble size is proportional to the number of genes; colour intensity reflects –log10 (adjusted p value). Key cancer-related 
pathways (PI3K-Akt, MAPK, ECM-receptor interaction) are highlighted.
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LASSO regression and SVM-RFE were employed 
to identify key CSRGs and MRRGs among the 15 
candidate genes. Of the 15 candidate genes, 6 genes, 
namely GATM, SRM, HNMT, CXCL1, NDRG1, and 
SERPINE1, were selected in the lambda.min model 
(Figure 5A). SVM-RFE with 10-fold cross-validation 
selected eight genes: CXCL1, SRM, GATM, NDRG1, 
WSB1, SERPINE1, CYP1B1, and CCL2 (Figure 5B)). 
Finally, five overlapping genes from LASSO and SVM-
RFE, namely, CXCL1, SRM, GATM, NDRG1, and 
SERPINE1, were identified as key CSRGs and MRRGs 
involved in CRC metastasis (Figure 5C)). CXCL1 is 
involved in oncogene-induced senescence, whereas 
SERPINE1 participates in replicative senescence. 
SRM has been implicated in glutathione, beta-alanine, 
arginine, proline, cysteine, and methionine metabolism. 
Additionally, GATM was involved in arginine and proline 
metabolism as well as glycine, serine, and threonine 
metabolism (Figure 5D)). Among these five genes, 
CXCL1 and SERPINE1 were predicted to be localized in 

the extracellular space, SRM in the cytoplasm, GATM in 
the mitochondria, and NDRG1 in both the cytoplasm and 
nucleus (Table 1).

3.4. Key genes may affect the immune microenvironment 
and drug sensitivity of patients with CRLM

Liver metastasis, the leading cause of CRC-related 
mortality, is characterized by a highly heterogeneous 
and suppressive immune microenvironment (11). We 
compared immune cell infiltration profiles between 
the liver metastasis and primary tumor groups. The 
infiltration of MDSCs, natural killer cells, natural 
killer T cells, regulatory T cells, and type 1 T helper 
cells was significantly higher in the liver metastasis 
group (Figure 6A). Strong positive correlations were 
observed between SERPINE1 and MDSCs (correlation 
coefficient, COR = 0.72), natural killer T cells (COR 
= 0.9), natural killer cells (COR = 0.82), regulatory T 
cells (COR = 0.85), and type 1 T helper cells (COR 

Figure 2. Identification and epigenetic–transcriptional coupling of senescence- and metabolism-related genes in CRLM. (A) Volcano plot of 
differentially expressed genes (DEGs) between liver metastasis and primary tumour samples (GSE213402). Red, up-regulated genes (n = 250); blue, 
down-regulated genes (n = 156) (FDR < 0.05 and |log2FC| > 1). (B) Venn diagrams depicting the intersection between DEGs and the curated gene 
sets: 28 differentially expressed cellular-senescence-related genes (DE-CSRGs, top ) and 24 differentially expressed metabolic-reprogrammingrelated 
genes (DE-MRRGs, bottom). (C) Strategy and numbers used to define differentially methylated CSRGs (DM-CSRGs, n = 8, top) and differentially 
methylated MRRGs (DM-MRRGs, n = 7, bottom) by overlapping methylation status (hyper/hypo) with expression direction (down/up). (D) 
Spearman correlation heat-map of the 15 overlapping differentially methylated CSRGs and MRRGs. Colour intensity indicates correlation coefficient 
(red, positive; blue, negative); only correlations with |r| > 0.3 and p < 0.05 are shown.)
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= 0.84) (Figure 6B). SERPINE1 positively correlated 
with the immune functions of antigen-presenting cell 
co-stimulation (COR = 0.52), chemokine receptor 
signaling (COR = 0.59), immune checkpoint activity 
(COR = 0.55), parainflammation (COR = 0.67), T 
cell co-inhibition (COR = 0.55), and type 1 interferon 
response (COR = 0.61) (Figure 6C). SERPINE1 
was positively correlated with HLA-DQA2 (COR = 
0.45), HLA-DQA1 (COR = 0.51), and HLA-DRB1 

(COR = 0.46) (Figure 6D). These results suggest that 
SERPINE1 is closely associated with the metastatic 
immune microenvironment. Variations in the immune 
microenvironment may influence drug sensitivities in 
patients with cancer. Thus, we compared sensitivity 
to chemotherapy between the metastatic and primary 
groups. A significant difference in the IC50 values was 
detected for the 30 therapeutic agents. Among them, 
oxaliplatin and 5-fluorouracil, which are commonly 

Figure 3. Transcript abundance and prognostic value of the five-gene senescence–metabolism signature. (A) Expression levels of CXCL1, 
SERPINE1, NDRG1, SRM and GATM in the discovery (GSE213402) cohort. Data are shown as fragments per kilobase of transcript per million 
mapped reads (FPKM) in primary tumours (n = 10) versus liver metastases (n = 10). P values were calculated with the paired Wilcoxon test. (B) 
RNA-seq validation of the same five genes in an independent set of 10 patient-matched fresh-frozen primary CRC and synchronous liver metastases 
collected at our centre (Huashan Hospital, 2014-2020). Read counts were normalized to TPM; boxes represent median ± interquartile range. (C) 
TCGA-COAD/READ dataset: box-plots comparing tumour (n = 607) versus adjacent normal mucosa (n = 51) for each signature gene. P values, 
Wilcoxon rank-sum test. (D) Huashan cohort: RNA-seq comparison of tumour versus adjacent normal mucosa (n = 10 pairs). P values, paired t test.(E)
Kaplan-Meier plots of overall survival in TCGA-CRC patients stratified by median expression of CXCL1 (left) and GATM (right). Log-rank P values 
are shown.
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used as chemotherapeutic agents for CRC, exhibited 
significantly higher IC50 values in the liver metastasis 
group than in the primary tumor group (Figure 7A). 
Furthermore, SRM expression was negatively correlated 
with IC50 values of 5-FU (r = -0.55), indicating that high 
SRM expression is associated with increased sensitivity 
to 5-FU. SRM negatively correlated with oxaliplatin 
levels (r = -0.45). Conversely, NDRG1 positively 
correlated with oxaliplatin levels (r = 0.46), whereas 
CXCL1 showed a negative correlation (r = -0.45) (Figure 
7B). These results suggest the involvement of key 
genes in the mechanisms relevant to chemotherapeutic 
resistance in CRC metastasis.

4. Discussion

CRLM remains the dominant cause of death in patients 
with CRC; however, the molecular programs that 
allow disseminated tumor cells to survive, adapt, and 
ultimately colonize the hepatic parenchyma remain 
poorly understood. By integrating genome-wide DNA 
methylation profiles with bulk RNA sequencing data and 
curated gene sets for cellular senescence and metabolic 
reprogramming, we identified a five-gene epigenetic–
transcriptomic signature comprising CXCL1, SERPINE1, 
NDRG1 ,  SRM ,  and GATM ,  which functionally 
couples senescence-associated secretory traits with 

Figure 4. Gene-set enrichment analysis (GSEA) of the five-gene senescence–metabolism signature in CRLM. (A) GATM GSEA. Leading-
edge subsets are enriched for ribosome, oxidative phosphorylation and Huntington-disease pathways. (B) CXCL1 GSEA. Positive enrichment is 
observed for PPAR signalling, cytokine–cytokine receptor interaction and chemokine signalling pathways. (C) NDRG1 GSEA. ECM-receptor 
interaction, focal adhesion and complement–coagulation cascades exhibit significant enrichment. (D) SERPINE1 GSEA. Complement–coagulation 
cascade, ECM-receptor interaction and lysosomal pathways are positively enriched. (E) SRM GSEA. Oxidative phosphorylation, Parkinson-disease 
and ribosome pathways show significant enrichment.Genes were ranked by log2FC (metastasis vs primary tumour, x-axis; positive log2FC indicates 
upregulation in metastases); coloured lines trace the running enrichment score (y-axis) for the indicated pathways. All analyses used the c2.cp.kegg.
v7.5.1.symbols.gmt gene set; FDR < 0.05 was considered significant.
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metabolic plasticity in CRLM. The global shift toward 
hypomethylation observed in liver metastases (66,975 
hypomethylated versus 31,883 hypermethylated CpGs) 
recapitulates previous reports describing widespread 
methylation erosion during metastatic progression 
(12) and supports the concept that the loss of DNA 
methylation fidelity facilitates chromosomal instability 
and enhancer activation (13). Pathway-level annotation 
has consistently implicated the PI3K–Akt, MAPK, and 
ECM-receptor interaction cascades, all of which are 
linked to CRC cell extravasation and hepatic colonization 
(14-16).
	 CXCL1, SERPINE1, NDRG1, SRM, and GATM have 

been implicated in discrete aspects of CRC biology; 
however, their concerted actions in CRLM remain 
unknown. CXCL1 and SERPINE1 are canonical SASP 
factors that sustain neutrophil- and MDSC-rich niches 
in the metastatic liver and were associated with focal 
hypomethylation, echoing prior reports of NF-κB- and 
TGF-β-driven chemokine induction during oncogene-
induced senescence (6). NDRG1, traditionally viewed as 
a hypoxia-responsive suppressor, was demethylated and 
overexpressed in metastases, consistent with recent data 
linking its antioxidant function to oxaliplatin resistance 
(17). The metabolic enzymes SRM and GATM, although 
seldom studied in CRC, control polyamine and creatine–

Table 1. Subcellular localization prediction of the five hub genes

Gene symbol

CXCL1
SERPINE1
SRM
GATM
NDRG1

Predicted primary localization

Extracellular
Extracellular
Cytoplasm
Mitochondrion
Cytoplasm / Nucleus

ND: Predictions were generated with Cell-Ploc 2.0 (http://www.csbio.sjtu.edu.cn/bioinf/Cell-Ploc-2/). Scores represent the highest voting 
confidence among 11 integrated algorithms.

Experimental evidence (UniProt)

Secreted chemokine (P09341)
Secreted serpin (P05121)
Soluble cytoplasmic enzyme (P19623)
Mitochondrial matrix protein (P50440)
Dual-localized scaffold protein (Q92597)

Prediction score

0.91
0.89
0.83
0.79
0.76 / 0.71

Figure 5. Machine-learning identification of a five-gene senescence–metabolism signature predictive of CRLM. (A) Left: Ten-fold cross-
validated binomial deviance (y-axis) plotted against log(λ) (x-axis) for LASSO logistic regression of 15 candidate DM-CSRGs/DM-MRRGs. Red 
dots indicate mean deviance ± 1 SE; vertical dashed lines mark λ_min (left) and λ_1SE (right). Right: Profile of regression coefficients (y-axis) 
versus log(λ) (x-axis); each coloured line represents one gene, illustrating coefficient shrinkage with increasing penalty. Six genes (GATM, SRM, 
HNMT, CXCL1, NDRG1, SERPINE1) survived at λ_min. (B) SVM-RFE recursive feature elimination. Mean cross-validation accuracy (y-axis) is 
plotted as a function of the number of input genes (x-axis). The peak accuracy (eight genes) is indicated by the red dot; the selected subset comprises 
CXCL1, SRM, GATM, NDRG1, WSB1, SERPINE1, CYP1B1 and CCL2. (C) Venn overlap of genes retained by LASSO (purple) and SVM-RFE 
(blue) yielding the final five-gene signature: CXCL1, SERPINE1, NDRG1, SRM and GATM. (D) Functional classification of the five signature genes 
according to their primary roles in cellular-senescence pathways (CXCL1, SERPINE1, NDRG1) or metabolic reprogramming (SRM, GATM).
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phosphocreatine flux, respectively, and their elevated 
expression aligns with the dependence of disseminated 
tumor cells on de novo polyamine synthesis and 
mitochondrial ATP buffering (18,19). Collectively, these 
five genes appear to link the two hallmarks of CRLM 
— senescence bypass and metabolic reprogramming — 
and provide readily testable biomarkers for therapeutic 
stratification.
	 The GSEA profile of our five-gene signature was 
dominated by four functional modules: complement 
and coagulation cascades, focal adhesion/ECM-receptor 
interactions, OXPHOS, and PPAR signaling, each of 

which has been independently implicated in CRLM 
(11,14). Complement–coagulation axis activation is one 
of the most recurrent signatures in prior transcriptomic 
surveys and has recently been validated functionally; 
deletion of factor B of the alternative complement 
pathway reduced liver tumor burden by >60% in a 
syngeneic CRLM model (20). The strong enrichment of 
SERPINE1 and CXCL1 within this cascade is consistent 
with the hypothesis that SASP factors may contribute to 
attracting myeloid cells and, potentially, to propagating a 
fibrin-rich metastatic niche via complement amplification 
(6,21,22). Focal-adhesion/ECM-receptor genes were 
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Figure 6. Immune landscape linked to the five-gene senescence–metabolism signature in CRLM. (A) Box-plots comparing the infiltration 
scores of 28 immune cell types between liver metastasis and primary tumour samples (GSE213402). Only significantly altered populations are shown 
(Wilcoxon test, FDR < 0.05). MDSC, myeloid-derived suppressor cell; NK, natural killer; Treg, regulatory T cell; Th1, type-1 T helper cell. (B) 
Spearman correlation heat-map between the five signature genes and the differentially infiltrated immune cells. Colour intensity reflects correlation 
coefficient (red, positive; blue, negative); asterisks indicate FDR < 0.05. (C) Correlation of signature genes with immune-related functions: antigen-
presenting cell co-stimulation, chemokine receptor signaling, immune checkpoint activity, parainflammation, T-cell co-inhibition, and type I 
interferon response, as well as with HLA gene expression. Circle size and colour scale represent absolute correlation coefficient; only |r| > 0.3 and 
FDR < 0.05 are plotted. (D) Spearman correlation matrix between the five signature genes and HLA-family genes in the GSE213402 cohort. Colour 
intensity indicates correlation coefficient; asterisks denote FDR < 0.05.
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previously identified as hub nodes in a 321-gene CRLM 
network and correlated with poor survival (23). Our 
observation that NDRG1 and SERPINE1 are enriched 
within the ECM-receptor signature raises the hypothesis 
that these cancer-cell-intrinsic programs may contribute 
to ECM remodeling during intrahepatic colonization 
(17,24). Finally, the co-enrichment of OXPHOS and 
PPAR signaling mirrors single-cell data showing that 
both tumor cells and lipid-associated TAMs upregulate 
mitochondrial respiration and PPARγ activity in CRLM 
(25). The positioning of SRM and GATM within these 

metabolic gene sets suggests a potential — yet still 
unproven — mechanistic connection between epigenetic 
senescence bypass and bioenergetic adaptation (26), 
offering testable targets for metabolic–immune 
combination therapy in CRLM (9,27).
	 Our comparative profiling of liver metastases 
versus primary tumors revealed a coherent, stepwise 
reprogramming that appears to converge across the 
transcriptional, immune, and pharmacological layers, 
yielding immediately testable clinical hypotheses. 
First, the five-gene senescence–metabolic hub (CXCL1, 
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Figure 7. Chemotherapy sensitivity linked to the five-gene senescence–metabolism signature in CRLM. (A) Box-plots comparing predicted IC50 
values of commonly used chemotherapeutic agents between primary tumour and liver-metastasis samples (GSE213402). IC50 values were calculated 
with the oncoPredict algorithm; central line indicates median, whiskers 1.5 × IQR. P values, paired Wilcoxon test. (B) Spearman correlations between 
the five signature genes and IC50 values of commonly used chemotherapeutic agents. Significant negative correlations with SRM and positive 
correlations with NDRG1 are observed (|r| > 0.4, FDR < 0.05). Negative correlation indicates increased drug sensitivity.
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SERPINE1, NDRG1, SRM, and GATM) is consistently 
upregulated in metastases and is driven by locus-
specific hypomethylation rather than by copy-number 
gain, implying that epigenetic therapy (e.g., low-
dose DNMT inhibitors) or biological neutralization 
of CXCL1/PAI-1 represents a testable — yet still 
hypothetical — strategy to reverse the metastatic 
phenotype attributed to the five-gene hub (28). Notably, 
CXCL1 and SRM were downregulated in liver 
metastases compared to primary tumors (GSE213402), 
yet upregulated in primary tumors compared to normal 
mucosa (TCGA). This apparent contradiction may 
reflect stage-specific roles of these genes during tumor 
evolution — early activation during tumorigenesis, 
followed by transcriptional suppression in the metastatic 
niche, potentially driven by microenvironmental cues 
or epigenetic reprogramming. Second, the parallel 
enrichment of MDSCs and Tregs, together with the 
altered abundance of NK cells and the downregulation 
of HLA-DQA1/DRB1, indicates that immune evasion 
may be orchestrated by the same hub genes; pre-clinical 
models are needed to examine whether targeting 
the polyamine–creatine axis (e.g., DFMO or GATM 
inhibitors) can impair tumor growth, enhance antigen 
presentation, and potentially synergize with PD-1/
LAG-3 blockade (29). Finally, the inverse correlation 
between SRM expression and 5-FU/oxaliplatin IC50, 
in contrast to the positive correlation with NDRG1, 
generates the hypothesis that these genes might inform 
chemotherapy selection; prospective clinical validation 
is essential before any patient-triage application(30). 
Collectively, our bioinformatic analyses generate the 
hypothesis that the five-gene signature could guide 
decision-making for combined metabolic-immune 
chemotherapy in CRLM; functional and clinical studies 
are now required to confirm its utility.
	 In summary, our five-gene signature integrates 
senescence bypass, metabolic reprogramming, and 
immune evasion in CRLM, and provides potential 
biomarkers for patient stratification and combination 
therapy. Due to the limited sample size of the 
GSE213402 cohort (n = 10 pairs), our findings are 
exploratory and require validation in larger independent 
cohorts. Machine-learning-derived signatures may be 
prone to overfitting at this scale. Functional assays and 
prospective clinical validation are warranted to confirm 
the causal roles of the five-gene signature in CRLM 
progression and therapy response.
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