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SUMMARY: Colorectal liver metastasis (CRLM) remains lethal, and the convergence of cellular senescence with
metabolic reprogramming via epigenomic rewiring is poorly understood. We integrated genome-wide DNA methylation
and RNA-seq data from 10 paired primary tumors and liver metastases (GSE213402). After calling differentially
methylated genes (3,399 hyper- and 9,519 hypomethylated) and differentially expressed genes (406 DEGs), we
intersected them with curated senescence (n = 866) and metabolic reprogramming (n = 948) gene sets, yielding 28
differentially expressed cellular-senescence-related genes (DE-CSRGs) and 24 metabolic-reprogramming-related
genes (DE-MRRGs). Machine-learning pipelines (LASSO + SVM-RFE) converged on a five-gene signature: CXCLI,
SERPINE1, NDRG1, SRM and GATM, most of which are hypomethylated and over-expressed in metastases. Gene-
set enrichment analysis revealed that these genes are involved in pathways such as oxidative phosphorylation, focal
adhesion, complement—coagulation cascades, and PPAR signaling. Immune de-convolution revealed strong positive
correlations between signature genes and immunosuppressive subsets (MDSCs, Tregs, type-1 T-helper cells; p < 0.05).
Elevated ICs, values for oxaliplatin and 5-fluorouracil in metastatic samples were positively associated with NDRG I
and negatively with SRM, indicating chemo-resistance modulation. This five-gene epigenetic—transcriptomic hub
identifies a molecular signature that warrants prospective validation as a potential biomarker for patient stratification
and combination therapy in CRLM.

Keywords: DNA hypomethylation, machine-learning signature, chemoresistance, immunosuppressive
microenvironment, polyamine metabolism

1. Introduction

Colorectal liver metastasis (CRLM) remains a major
clinical challenge, as colorectal cancer (CRC) is the
second leading cause of cancer-related mortality
globally, and the liver is the primary site of metastasis.
CRLM occurs in 20-50% of patients with Colorectal
Cancer (CRC), with a 5-year survival rate of 10-30%,
depending on the resectability of metastases (/). Current
treatment options include surgical resection, systemic
chemotherapy, radiation therapy, and ablation therapy;
however, only a minority of patients are eligible for
curative resection (2). Immunotherapy has emerged
as a promising therapeutic approach, particularly
when combined with local therapies. Nonetheless,
prognosis remains poor, underscoring the need for novel
biomarkers to improve prognostic accuracy and guide
personalized treatment strategies.

Cellular senescence is an irreversible cell cycle
arrest triggered by stressors, such as DNA damage and
oxidative stress (3). It is characterized by enlarged cell
size, expression of cell cycle inhibitors (e.g., p16 and
p21), and a senescence-associated secretory phenotype
(SASP), which includes pro-inflammatory cytokines
and extracellular matrix (ECM) remodeling proteins (4).
Senescence can act as a tumor suppressor by halting the
proliferation of damaged cells (5); however, SASP can
also promote tumor progression by altering the tumor
microenvironment (6). Metabolic reprogramming, which
involves adaptive changes in the cellular metabolism
that support rapid proliferation, is a hallmark of cancer
cells (7). In CRLM, metabolic reprogramming enables
cancer cells to adapt to the liver microenvironment,
facilitating metastatic colonization (8,9). The interplay
between senescence and metabolic reprogramming in
CRLM is complex, with senescent cells potentially
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inducing metabolic changes in neighboring cells, and
metabolic alterations reciprocally influencing senescent
phenotypes. Identifying biomarkers associated with these
processes is crucial for elucidating the pathogenesis of
CRLM and may provide novel therapeutic targets.

In this study, we utilized publicly available
methylation and transcriptomic data on CRLM to
investigate the crucial roles and prognostic value of
genes related to cellular senescence and metabolic
reprogramming in disease progression, employing
bioinformatic techniques. We further investigated
potential molecular regulatory mechanisms and drug
responses associated with these genes. Our findings
provide novel theoretical support and a valuable
reference for clinical research and prognostic evaluation
in CRLM.

2. Materials and Methods
2.1. Sample collection and RNA-sequencing

Fresh tissue samples, including primary colorectal
tumors and matched liver metastases, were collected
from patients diagnosed with CRC at HuaShan Hospital
between 2014 and 2020. All samples were obtained
immediately following surgical resection, snap-frozen
in liquid nitrogen, and stored at —80 °C until further
processing. All clinical samples were collected after
obtaining informed consent and in accordance with a
protocol approved by the Ethics Committee of Huashan
Hospital, Fudan University (Shanghai, China). All
clinical samples were collected from patients after
obtaining informed consent in accordance with a protocol
approved by the Ethics Committee of Huashan hospital,
Fudan University (Shanghai, China).

2.2. Data source

RNA sequencing data and clinical information were
obtained from the TCGA database via UCSC Xena
(http.//xena.ucsc.edu/). TCGA-COAD and TCGA-READ
data were merged to generate a TCGA-CRC dataset, and
only samples with available survival information were
retained. Ultimately, 607 tumor samples and 51 normal
samples from the TCGA were used for prognostic
analysis. The transcriptome and DNA methylation data
of 10 paired primary tumors and liver metastases from 10
patients with CRC were sourced from the GSE213402
dataset in the GEO database to screen for metastasis-
related genes. In total, 866 cellular senescence-related
genes (CSRGs) were obtained from the CellAge database
(https://genomics.senescence.=cells/), and 948 metabolic
reprogramming-related genes (MRRGs) were identified
from a literature search (/0).

2.3. Identification of methylated genes involved in
metastasis

First, we identified differentially methylated CpGs
(DMCs) between liver metastasis and primary tumor
groups using thresholds of p-value < 0.05 and |AB|
> 0.2 and investigated the distribution of DMCs
across different CpG regions. Next, we mapped
CpG sites to their corresponding genes to identify
the methylated genes involved in metastasis. Genes
were classified into distinct methylation states based
on the ratio of hypermethylated to hypomethylated
CpGs, using a 1.5-fold threshold. Specifically, genes
with a hypermethylated/hypomethylated CpG ratio >
1.5 were defined as hypermethylated, and those with
a hypomethylated/hypermethylated ratio >1.5 were
defined as hypomethylated. To analyze the biological
pathways associated with methylated genes, functional
enrichment analysis was conducted using the R package
"clusterProfiler."

2.4. Identification of differentially methylated CSRGs
and MRRGs

We used the DESeq?2 package to identify differentially
expressed genes (DEGs) between the liver metastasis
and primary tumor groups, with a false discovery
rate (FDR) P,; < 0.05 and [log2FC| > 1. To identify
differentially expressed cellular senescence-related genes
(DECSRGs) and metabolic reprogramming-related genes
(DEMRRGs), we performed an overlap analysis among
DEGs, 866 CSRGs, and 948 MRRGs. Differentially
methylated cellular senescence-related genes (DM-
CSRGs) were identified through intersection analysis
of (i) hypermethylated genes with downregulated
DECSRGs, and (i7) hypomethylated genes with
upregulated DECSRGs. Similarly, differentially
methylated metabolic reprogramming genes (DM-
MRRGs) were derived from the intersections of (i)
hypermethylated genes and downregulated DEMRRGs,
and (ii) hypomethylated genes and upregulated
DEMRRGSs. Spearman's correlation analysis was
conducted on DM-CSRGs and DM-MRRGs to evaluate
their association. Correlated DM-CSRGs and DM-
MRRGs were screened based on a threshold of p < 0.05
and |cor| > 0.3.

2.5. Machine learning

To identify key genes, two machine learning algorithms,
support vector machine-recursive feature elimination
(SVM-RFE) and least absolute shrinkage and selection
operator (LASSO), were employed. Initially, we utilized
the 'glmnet' package in R for LASSO analysis, which
selects key genes from a set of candidate genes through
binomial logistic regression. Subsequently, the SVM
package was employed to implement the SVM-RFE
model using a 10-fold cross-validation strategy. Key
CSRGs and MRRGs were identified by overlapping the
feature genes obtained from LASSO and SVM-RFE.
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2.6. Characterization of key genes

First, we analyzed the expression levels of key genes in
the primary tumors and liver metastases. Subsequently,
to investigate the prognostic value of the key genes in
CRC, we divided TCGA-CRC samples into high- and
low-expression groups based on the median expression
levels of the key genes, followed by Kaplan—-Meier (KM)
survival analysis. Gene set enrichment analysis (GSEA)
was performed to investigate the functions of key genes
using c2.cp.kegg.v7.5.1.symbols.gmt gene set as the
reference. Subcellular localization analysis of key genes
was performed using Cell-Ploc 2.0.

2.7. Analysis of immune microenvironment and drug
sensitivity

The infiltration of 28 immune cell types, including
B cell memory, eosinophil, macrophage, mast cell,
monocyte, neutrophil, NK cell, effector memory CD4
T cell, effector memory CDS8 T cell, activated CD4 T
cell, activated CD8 T cell, T cell follicular helper, T
cell gamma delta, T cell regulatory, activated B cell,
activated dendritic cell, CD56bright natural killer cell,
CD56dim natural killer cell, central memory CD4 T cell,
central memory CD8 T cell, immature B cell, immature
dendritic cell, MDSC, natural killer T cell, plasmacytoid
dendritic cell, T cell helper cell type 1, T cell helper cell
type 2, and T cell helper cell type 17 were compared
between liver metastasis and primary tumor groups.
Additionally, the half-maximal inhibitory concentration
(IC,,) values of irinotecan (1088), oxaliplatin (1089),
and 5-fluorouracil (1073) were calculated using the
"oncoPredict" R package to assess the drug sensitivity of
patients with primary tumor and liver metastasis.

2.8. Statistical analysis

A regulatory network was constructed using Cytoscape
(version 3.9.1). All statistical results were analyzed using
R (version 4.4.0). KM curves and log-rank tests were
used to visualize and test the survival differences among
the different groups. Differences in the continuous
variables between the two groups were examined using
the Wilcoxon test. A p-value < 0.05, unless otherwise
specified, was considered statistically significant.

3. Results

3.1. Analysis of the landscape of methylation in the
metastasis of CRC

We performed differential methylation analysis and
identified 98,858 DMCs between the liver metastasis and
primary tumor groups, including 31,883 hypermethylated
and 66,975 hypomethylated sites (Figure 1A). The
genomic distribution of these DMCs across the 24

chromosomes revealed that the majority of DMCs were
hypomethylated (Figure 1B). Moreover, the proportions
of hypomethylation in CpG island core, CpG island
shelf, and CpG island shores were 53.7%, 67.5%, and
62.8%, respectively, exceeding the corresponding
proportions of hypermethylation (Figure 1C). Based on
the CpG sites, 3,399 hypermethylated genes and 9,519
hypomethylated genes were identified. The enrichment
results of Gene Ontology showed that genes were
associated with biological processes such as embryonic
organ development, axonogenesis, synapse organization,
cellular components related to synaptic membrane,
neuronal cell body, glutamatergic synapse, and molecular
functions such as GTPase regulator activity, DNA-
binding transcription activator activity, and phospholipid
binding (Figure 1D). Kyoto Encyclopedia of Genes
and Genomes analysis revealed that these genes were
involved in the PI3K-Akt signaling pathway, human
papillomavirus infection, MAPK signaling pathway,
gastric cancer, breast cancer, and ECM-receptor
interaction (Figure 1E).

3.2. Identification of DM-CSRGs and DM-MRRGs

We identified 406 DEGs between the liver metastasis
and primary tumor groups, including 250 upregulated
and 156 downregulated genes in the primary tumor
group (Figure 2A). By overlapping the 866 CSRGs and
948 MRRGs, 28 DECSRGs and 24 DEMRRGs were
identified (Figure 2B). Eight DM-CSRGs (CXCLI,
NDRG1, SERPINEI, WSBI1, CCL2, EGR2, XAF1, and
VCAN) and seven DM-MRRGs (IL411, DPYD, ALOX3,
CYPIBI, HNMT, SRM, and GATM) were identified
(Figure 2C). Among these, CXCLI and SRM were
hypermethylated, whereas NDRGI, SERPINE1, WSBI,
CCL2, EGR2, XAF1, VCAN, IL411, DPYD, ALOXS,
CYPIBI, HNMT, and GATM were hypomethylated. We
observed multiple correlations among these genes; SRM
exhibited a strong positive correlation with CXCLI (r =
0.71). SERPINE] positively correlated with DPYD (r =
0.60), ALOXS (r=0.58), and CYP1BI (= 0.64). CCL2
expression was positively associated with the expression
of IL4I1 (= 0.60), DPYD (r = 0.90), ALOXS5 (r = 0.58),
and CYP1BI (r=0.88). VCAN also positively correlated
with IL411 (r = 0.59), DPYD (r = 0.63), ALOXS (r =
0.62), and CYPIBI1 (» = 0.78). Conversely, a negative
correlation was detected between CXCLI and HNMT (r
=-0.56) (Figure 2D).

In the GSE213402 dataset, the expression levels of
GATM, NDRG1, and SERPINE were elevated, whereas
those of CXCLI and SRM were reduced in the liver
metastasis group compared with those in the primary
tumor group (Figure 3A). The expression patterns of
these genes were consistent with the sequencing data
(Figure 3B). Additionally, the expression levels of
CXCLI1, SERPINE1, and SRM were upregulated, whereas
those of GATM and NDRGI were downregulated in
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Figure 1. Genome-wide methylation landscape distinguishing colorectal liver metastasis from primary tumors. (A) Volcano plot of 98,858
differentially methylated CpG sites (DMCs; |AB| > 0.2 and p < 0.05) between liver metastasis and primary tumor samples in the GSE213402 cohort.
Hypermethylated probes (n = 31,883) are shown in red; hypomethylated probes (n = 66,975) are shown in blue. (B) Bar chart showing the number of
hypermethylated (red bars) and hypomethylated (blue bars) DMCs across the 24 human chromosomes. (C) Proportional distribution of DMCs within
CpG-island sub-regions: CpG-island core, shore and shelf. Hypomethylation predominates in all three compartments (53.7 %, 62.8 % and 67.5 %,
respectively). (D) Top Gene Ontology (GO) biological-process and molecular-function terms enriched among genes harbouring metastasis-associated
DMCs. Bars represent —log10 (adjusted p value); the dashed vertical line indicates adjusted p = 0.05. (E) KEGG pathway enrichment bubble chart
for the same gene set. Bubble size is proportional to the number of genes; colour intensity reflects —logl10 (adjusted p value). Key cancer-related

pathways (PI3K-Akt, MAPK, ECM-receptor interaction) are highlighted.

the tumor group compared with those in the control
group (Figure 3C). The expression trends of GATM,
SRM, CXCLI, and NDRGI were consistent with our
sequencing data (Figure 3D). Furthermore, KM curves
were plotted for the five genes, and significant survival
differences were observed for CXCLI (p = 0.031)
and GATM (p = 0.038), indicating their potential as
prognostic biomarkers (Figure 3E). We performed
GSEA to gain a deeper understanding of the potential
mechanisms and found that NDRG! and SERPINE]

were associated with ECM-receptor interaction, focal
adhesion, Leishmania infection, lysosome, complement,
and coagulation cascades. GATM and SRM were related
to ribosomes, Huntington's disease, Parkinson's disease,
and oxidative phosphorylation (OXPHOS), while
CXCL1 was associated with the PPAR signaling pathway
(Figure 4A-4E).

3.3. Machine learning identified five key cellular
senescence-metabolic genes
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Figure 2. Identification and epigenetic—transcriptional coupling of senescence- and metabolism-related genes in CRLM. (A) Volcano plot of
differentially expressed genes (DEGs) between liver metastasis and primary tumour samples (GSE213402). Red, up-regulated genes (n = 250); blue,
down-regulated genes (n = 156) (FDR < 0.05 and [log2FC| > 1). (B) Venn diagrams depicting the intersection between DEGs and the curated gene
sets: 28 differentially expressed cellular-senescence-related genes (DE-CSRGs, top ) and 24 differentially expressed metabolic-reprogrammingrelated
genes (DE-MRRGs, bottom). (C) Strategy and numbers used to define differentially methylated CSRGs (DM-CSRGs, 1 = 8, top) and differentially
methylated MRRGs (DM-MRRGs, n = 7, bottom) by overlapping methylation status (hyper/hypo) with expression direction (down/up). (D)
Spearman correlation heat-map of the 15 overlapping differentially methylated CSRGs and MRRGs. Colour intensity indicates correlation coefficient
(red, positive; blue, negative); only correlations with |r| > 0.3 and p < 0.05 are shown.)

LASSO regression and SVM-RFE were employed
to identify key CSRGs and MRRGs among the 15
candidate genes. Of the 15 candidate genes, 6 genes,
namely GATM, SRM, HNMT, CXCLI, NDRGI, and
SERPINEI, were selected in the lambda.min model
(Figure 5A). SVM-RFE with 10-fold cross-validation
selected eight genes: CXCLI, SRM, GATM, NDRGI,
WSBI1, SERPINEI, CYPIBI, and CCL2 (Figure 5B)).
Finally, five overlapping genes from LASSO and SVM-
RFE, namely, CXCL1, SRM, GATM, NDRG1I, and
SERPINE1, were identified as key CSRGs and MRRGs
involved in CRC metastasis (Figure 5C)). CXCLI is
involved in oncogene-induced senescence, whereas
SERPINE] participates in replicative senescence.
SRM has been implicated in glutathione, beta-alanine,
arginine, proline, cysteine, and methionine metabolism.
Additionally, GATM was involved in arginine and proline
metabolism as well as glycine, serine, and threonine
metabolism (Figure 5D)). Among these five genes,
CXCLI and SERPINE] were predicted to be localized in

the extracellular space, SRM in the cytoplasm, GATM in
the mitochondria, and NDRG1 in both the cytoplasm and
nucleus (Table 1).

3.4. Key genes may affect the immune microenvironment
and drug sensitivity of patients with CRLM

Liver metastasis, the leading cause of CRC-related
mortality, is characterized by a highly heterogeneous
and suppressive immune microenvironment (/7). We
compared immune cell infiltration profiles between
the liver metastasis and primary tumor groups. The
infiltration of MDSCs, natural killer cells, natural
killer T cells, regulatory T cells, and type 1 T helper
cells was significantly higher in the liver metastasis
group (Figure 6A). Strong positive correlations were
observed between SERPINE1 and MDSCs (correlation
coefficient, COR = 0.72), natural killer T cells (COR
= 0.9), natural killer cells (COR = 0.82), regulatory T
cells (COR = 0.85), and type 1 T helper cells (COR
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Figure 3. Transcript abundance and prognostic value of the five-gene senescence—metabolism signature. (A) Expression levels of CXCLI,
SERPINEI1, NDRG1, SRM and GATM in the discovery (GSE213402) cohort. Data are shown as fragments per kilobase of transcript per million
mapped reads (FPKM) in primary tumours (n = 10) versus liver metastases (n = 10). P values were calculated with the paired Wilcoxon test. (B)
RNA-seq validation of the same five genes in an independent set of 10 patient-matched fresh-frozen primary CRC and synchronous liver metastases
collected at our centre (Huashan Hospital, 2014-2020). Read counts were normalized to TPM; boxes represent median + interquartile range. (C)
TCGA-COAD/READ dataset: box-plots comparing tumour (7 = 607) versus adjacent normal mucosa (n = 51) for each signature gene. P values,
Wilcoxon rank-sum test. (D) Huashan cohort: RNA-seq comparison of tumour versus adjacent normal mucosa (n = 10 pairs). P values, paired ¢ test.(E)
Kaplan-Meier plots of overall survival in TCGA-CRC patients stratified by median expression of CXCL/ (left) and GATM (right). Log-rank P values

are shown.

= 0.84) (Figure 6B). SERPINE] positively correlated
with the immune functions of antigen-presenting cell
co-stimulation (COR = 0.52), chemokine receptor
signaling (COR = 0.59), immune checkpoint activity
(COR = 0.55), parainflammation (COR = 0.67), T
cell co-inhibition (COR = 0.55), and type 1| interferon
response (COR = 0.61) (Figure 6C). SERPINE]
was positively correlated with HLA-DQA2 (COR =
0.45), HLA-DQAT1 (COR = 0.51), and HLA-DRBI

(COR = 0.46) (Figure 6D). These results suggest that
SERPINE] is closely associated with the metastatic
immune microenvironment. Variations in the immune
microenvironment may influence drug sensitivities in
patients with cancer. Thus, we compared sensitivity
to chemotherapy between the metastatic and primary
groups. A significant difference in the IC, values was
detected for the 30 therapeutic agents. Among them,
oxaliplatin and 5-fluorouracil, which are commonly
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Figure 4. Gene-set enrichment analysis (GSEA) of the five-gene senescence—metabolism signature in CRLM. (A) GATM GSEA. Leading-
edge subsets are enriched for ribosome, oxidative phosphorylation and Huntington-disease pathways. (B) CXCL! GSEA. Positive enrichment is
observed for PPAR signalling, cytokine—cytokine receptor interaction and chemokine signalling pathways. (C) NDRG1 GSEA. ECM-receptor
interaction, focal adhesion and complement—coagulation cascades exhibit significant enrichment. (D) SERPINE! GSEA. Complement—coagulation
cascade, ECM-receptor interaction and lysosomal pathways are positively enriched. (E) SRM GSEA. Oxidative phosphorylation, Parkinson-disease
and ribosome pathways show significant enrichment.Genes were ranked by log2FC (metastasis vs primary tumour, x-axis; positive 1og2FC indicates
upregulation in metastases); coloured lines trace the running enrichment score (y-axis) for the indicated pathways. All analyses used the c2.cp.kegg.

v7.5.1.symbols.gmt gene set; FDR < 0.05 was considered significant.

used as chemotherapeutic agents for CRC, exhibited
significantly higher ICy, values in the liver metastasis
group than in the primary tumor group (Figure 7A).
Furthermore, SRM expression was negatively correlated
with ICs, values of 5-FU (» = -0.55), indicating that high
SRM expression is associated with increased sensitivity
to 5-FU. SRM negatively correlated with oxaliplatin
levels (r = -0.45). Conversely, NDRG1 positively
correlated with oxaliplatin levels (r = 0.46), whereas
CXCLI showed a negative correlation (»=-0.45) (Figure
7B). These results suggest the involvement of key
genes in the mechanisms relevant to chemotherapeutic
resistance in CRC metastasis.

4. Discussion

CRLM remains the dominant cause of death in patients
with CRC; however, the molecular programs that
allow disseminated tumor cells to survive, adapt, and
ultimately colonize the hepatic parenchyma remain
poorly understood. By integrating genome-wide DNA
methylation profiles with bulk RNA sequencing data and
curated gene sets for cellular senescence and metabolic
reprogramming, we identified a five-gene epigenetic—
transcriptomic signature comprising CXCL1, SERPINE],
NDRGI1, SRM, and GATM, which functionally
couples senescence-associated secretory traits with
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Figure 5. Machine-learning identification of a five-gene senescence—metabolism signature predictive of CRLM. (A) Left: Ten-fold cross-
validated binomial deviance (y-axis) plotted against log(A) (x-axis) for LASSO logistic regression of 15 candidate DM-CSRGs/DM-MRRGs. Red
dots indicate mean deviance £+ 1 SE; vertical dashed lines mark A min (left) and A _ISE (right). Right: Profile of regression coefficients (y-axis)
versus log(L) (x-axis); each coloured line represents one gene, illustrating coefficient shrinkage with increasing penalty. Six genes (GATM, SRM,
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CXCLI, SRM, GATM, NDRG1, WSB1, SERPINE1, CYPIBI and CCL2. (C) Venn overlap of genes retained by LASSO (purple) and SVM-RFE
(blue) yielding the final five-gene signature: CXCL1, SERPINE1, NDRG1, SRM and GATM. (D) Functional classification of the five signature genes

according to their primary roles in cellular-senescence pathways (CXCL1, SERPINE1, NDRGI) or metabolic reprogramming (SRM, GATM).

Table 1. Subcellular localization prediction of the five hub genes

Gene symbol Predicted primary localization Prediction score Experimental evidence (UniProt)
CXCLI Extracellular 0.91 Secreted chemokine (P09341)

SERPINE1 Extracellular 0.89 Secreted serpin (P05121)

SRM Cytoplasm 0.83 Soluble cytoplasmic enzyme (P19623)
GATM Mitochondrion 0.79 Mitochondrial matrix protein (P50440)
NDRG1 Cytoplasm / Nucleus 0.76 /0.71 Dual-localized scaffold protein (Q92597)

ND: Predictions were generated with Cell-Ploc 2.0 (http://www.csbio.sjtu.edu.cn/bioinf/Cell-Ploc-2/). Scores represent the highest voting

confidence among 11 integrated algorithms.

metabolic plasticity in CRLM. The global shift toward
hypomethylation observed in liver metastases (66,975
hypomethylated versus 31,883 hypermethylated CpGs)
recapitulates previous reports describing widespread
methylation erosion during metastatic progression
(12) and supports the concept that the loss of DNA
methylation fidelity facilitates chromosomal instability
and enhancer activation (/3). Pathway-level annotation
has consistently implicated the PI3K—-Akt, MAPK, and
ECM-receptor interaction cascades, all of which are
linked to CRC cell extravasation and hepatic colonization
(14-16).

CXCLI, SERPINEI1, NDRGI1, SRM, and GATM have

been implicated in discrete aspects of CRC biology;
however, their concerted actions in CRLM remain
unknown. CXCL/I and SERPINE] are canonical SASP
factors that sustain neutrophil- and MDSC-rich niches
in the metastatic liver and were associated with focal
hypomethylation, echoing prior reports of NF-kB- and
TGF-B-driven chemokine induction during oncogene-
induced senescence (6). NDRG 1, traditionally viewed as
a hypoxia-responsive suppressor, was demethylated and
overexpressed in metastases, consistent with recent data
linking its antioxidant function to oxaliplatin resistance
(17). The metabolic enzymes SRM and GATM, although
seldom studied in CRC, control polyamine and creatine—
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Figure 6. Immune landscape linked to the five-gene senescence—metab

olism signature in CRLM. (A) Box-plots comparing the infiltration

scores of 28 immune cell types between liver metastasis and primary tumour samples (GSE213402). Only significantly altered populations are shown
(Wilcoxon test, FDR < 0.05). MDSC, myeloid-derived suppressor cell; NK, natural killer; Treg, regulatory T cell; Thl, type-1 T helper cell. (B)
Spearman correlation heat-map between the five signature genes and the differentially infiltrated immune cells. Colour intensity reflects correlation

coefficient (red, positive; blue, negative); asterisks indicate FDR < 0.05. (C)
presenting cell co-stimulation, chemokine receptor signaling, immune ch

Correlation of signature genes with immune-related functions: antigen-
eckpoint activity, parainflammation, T-cell co-inhibition, and type I

interferon response, as well as with HLA gene expression. Circle size and colour scale represent absolute correlation coefficient; only |r| > 0.3 and
FDR < 0.05 are plotted. (D) Spearman correlation matrix between the five signature genes and HLA-family genes in the GSE213402 cohort. Colour

intensity indicates correlation coefficient; asterisks denote FDR < 0.05.

phosphocreatine flux, respectively, and their elevated
expression aligns with the dependence of disseminated
tumor cells on de novo polyamine synthesis and
mitochondrial ATP buffering (/8,79). Collectively, these
five genes appear to link the two hallmarks of CRLM
— senescence bypass and metabolic reprogramming —
and provide readily testable biomarkers for therapeutic
stratification.

The GSEA profile of our five-gene signature was
dominated by four functional modules: complement
and coagulation cascades, focal adhesion/ECM-receptor
interactions, OXPHOS, and PPAR signaling, each of

which has been independently implicated in CRLM
(11,14). Complement—coagulation axis activation is one
of the most recurrent signatures in prior transcriptomic
surveys and has recently been validated functionally;
deletion of factor B of the alternative complement
pathway reduced liver tumor burden by >60% in a
syngeneic CRLM model (20). The strong enrichment of
SERPINE] and CXCLI within this cascade is consistent
with the hypothesis that SASP factors may contribute to
attracting myeloid cells and, potentially, to propagating a
fibrin-rich metastatic niche via complement amplification
(6,21,22). Focal-adhesion/ECM-receptor genes were
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Figure 7. Chemotherapy sensitivity linked to the five-gene senescence—metabolism signature in CRLM. (A) Box-plots comparing predicted ICs,
values of commonly used chemotherapeutic agents between primary tumour and liver-metastasis samples (GSE213402). 1C;, values were calculated
with the oncoPredict algorithm; central line indicates median, whiskers 1.5 x IQR. P values, paired Wilcoxon test. (B) Spearman correlations between
the five signature genes and ICj, values of commonly used chemotherapeutic agents. Significant negative correlations with SRM and positive

correlations with NDRG1 are observed (|| > 0.4, FDR < 0.05). Negative correlation indicates increased drug sensitivity.

previously identified as hub nodes in a 321-gene CRLM
network and correlated with poor survival (23). Our
observation that NDRG! and SERPINE1 are enriched
within the ECM-receptor signature raises the hypothesis
that these cancer-cell-intrinsic programs may contribute
to ECM remodeling during intrahepatic colonization
(17,24). Finally, the co-enrichment of OXPHOS and
PPAR signaling mirrors single-cell data showing that
both tumor cells and lipid-associated TAMs upregulate
mitochondrial respiration and PPARY activity in CRLM
(25). The positioning of SRM and GATM within these

metabolic gene sets suggests a potential — yet still
unproven — mechanistic connection between epigenetic
senescence bypass and bioenergetic adaptation (26),
offering testable targets for metabolic—immune
combination therapy in CRLM (9,27).

Our comparative profiling of liver metastases
versus primary tumors revealed a coherent, stepwise
reprogramming that appears to converge across the
transcriptional, immune, and pharmacological layers,
yielding immediately testable clinical hypotheses.
First, the five-gene senescence—metabolic hub (CXCL]I,
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SERPINEI, NDRG1, SRM, and GATM) is consistently
upregulated in metastases and is driven by locus-
specific hypomethylation rather than by copy-number
gain, implying that epigenetic therapy (e.g., low-
dose DNMT inhibitors) or biological neutralization
of CXCLI1/PAI-1 represents a testable — yet still
hypothetical — strategy to reverse the metastatic
phenotype attributed to the five-gene hub (28). Notably,
CXCL1 and SRM were downregulated in liver
metastases compared to primary tumors (GSE213402),
yet upregulated in primary tumors compared to normal
mucosa (TCGA). This apparent contradiction may
reflect stage-specific roles of these genes during tumor
evolution — early activation during tumorigenesis,
followed by transcriptional suppression in the metastatic
niche, potentially driven by microenvironmental cues
or epigenetic reprogramming. Second, the parallel
enrichment of MDSCs and Tregs, together with the
altered abundance of NK cells and the downregulation
of HLA-DQA1/DRBI, indicates that immune evasion
may be orchestrated by the same hub genes; pre-clinical
models are needed to examine whether targeting
the polyamine—creatine axis (e.g., DFMO or GATM
inhibitors) can impair tumor growth, enhance antigen
presentation, and potentially synergize with PD-1/
LAG-3 blockade (29). Finally, the inverse correlation
between SRM expression and 5-FU/oxaliplatin ICj,
in contrast to the positive correlation with NDRGI,
generates the hypothesis that these genes might inform
chemotherapy selection; prospective clinical validation
is essential before any patient-triage application(30).
Collectively, our bioinformatic analyses generate the
hypothesis that the five-gene signature could guide
decision-making for combined metabolic-immune
chemotherapy in CRLM; functional and clinical studies
are now required to confirm its utility.

In summary, our five-gene signature integrates
senescence bypass, metabolic reprogramming, and
immune evasion in CRLM, and provides potential
biomarkers for patient stratification and combination
therapy. Due to the limited sample size of the
GSE213402 cohort (n = 10 pairs), our findings are
exploratory and require validation in larger independent
cohorts. Machine-learning-derived signatures may be
prone to overfitting at this scale. Functional assays and
prospective clinical validation are warranted to confirm
the causal roles of the five-gene signature in CRLM
progression and therapy response.
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