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Introduction

Cancer is a genetic disease of somatic cells arising from 
accumulation of genetic changes, and abnormalities 
of suppressor genes and oncogenes are frequently 
associated with carcinogenesis. To stratify patients 
and select the most appropriate treatment options 
for hepatocellular carcinoma (HCC), many staging 
systems from the standpoint of clinical information 
and pathological classification have been proposed 
(1,2). However, despite improvements in these trials, 
prognostic predictions for HCC are still not fully 
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Hepatocarcinogenesis involves complex combinations of molecular events, such as genetic 
aberrations, epigenetic changes, and alterations in gene expression. To elucidate the 
mechanism of hepatocarcinogenesis, it is necessary to reconstruct these molecular events 
at each level. This article presents a review of copy number analyses of hepatocellular 
carcinoma (HCC) using traditional comparative genomic hybridization (CGH), array-
based CGH (aCGH), and single nucleotide polymorphism (SNP) arrays. A number 
of studies have applied CGH technology for copy number analysis of HCC and have 
indicated the significance of correlations of frequent genomic aberrations with various 
clinicopathological parameters, prediction of recurrence and prognosis, and treatment 
selection, followed by comprehensive genomic analysis using aCGH with much higher 
resolution. Furthermore, we present our data regarding genomic aberrations of HCC 
obtained using the Genome Imbalance Map (GIM) algorithm, which simultaneously 
detects DNA copy number alterations and loss of heterozygosity using SNP arrays, and the 
Expression Imbalance Map (EIM) algorithm, which detects mRNA expression imbalance 
correlated with chromosomal regions. Using these two algorithms, we integrated the 
expression profiles, locus information, and genomic aberrations in a systematic manner, 
which is effective for detecting structural genomic abnormalities, such as chromosomal 
gains and losses, and showed that gene expression profiles are subject to chromosomal bias. 
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acceptable for selection of individualized treatments 
(3). Therefore, there has been a great deal of effort 
using molecular biological technologies to establish 
prognostic models for HCC.
 Many researchers have reported genomic decoding 
regarding carcinogenesis, invasion, and metastasis 
of liver cancer (4-14). Furthermore, considering the 
complexity of carcinogenesis, many other genes may 
be involved in both the initiation and progression of 
cancer, and comprehensive expression analysis using 
microarray technology has great potential for the 
discovery of new genes involved in carcinogenesis (15).
 In addition to identification of novel candidate 
genes for biomarkers and the discovery of therapeutic 
targets, which are helpful for improvement of clinical 
diagnosis and treatment (16,17), classification and 
selection of predictor genes for HCC using genome-
wide expression analysis have been reported (18). 
Okabe et al. reported gene expression profiling analysis 
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of liver cancer etiology, including hepatitis B and 
hepatitis C viral infection (19). Using comprehensive 
expression analysis, gene prediction sets for anti-cancer 
drug sensitivity (20) or intrahepatic recurrence (21) 
were demonstrated. Thus, comprehensive expression 
analysis has enabled us to perform clustering analysis 
based on clinicopathological features, identification of 
candidate genes for therapy, and diagnosis, and selection 
of predictor genes for tailor-made therapy. 
 On the other hand, by integration of expression 
profiles with gene loci, it has been shown that gene 
expression profiles are subject to chromosomal bias 
(22-26). In addition, genes in regions of chromosomal 
aberration with altered gene expression levels are more 
likely to represent oncogenes or tumor suppressor 
genes. Therefore, it is necessary to investigate the copy 
number information in addition to expression profile in 
the same samples. Comparative genomic hybridization 
(CGH) has been used extensively to detect genome-
wide copy number alterations in various types of cancer 
and to determine the localization of expression of many 
oncogenes and tumor suppressor genes (27), and there 
have been a number of reports of chromosomal analysis 
using CGH in HCC (28-40). These previous studies 
investigated the associations between chromosomal 
alterations and various clinicopathological factors, such 
as tumor progression (29,30,32,36,37,40), prognosis 
(35), and viral infection (31,33) in liver cancer. 
 Recently, array-based CGH (aCGH) using genomic 
DNA or cDNA clones has been developed and provided 
much higher resolution detection of copy number 
alterations than conventional CGH. Therefore, accurate 
identification of genes with DNA copy number changes 
in carcinogenesis is now possible (41-43). Using aCGH, 
high-resolution mapping of copy number aberrations in 
HCC has been reported, especially in measuring high-
level amplification and homozygous deletion (44-48).
 Single nucleotide polymorphism (SNP) arrays, 
which were originally designed for high-throughput 
SNP analysis (49,50), can provide high-resolution 
analyses of loss of heterozygosity (LOH) in a genome-
wide fashion (51-55). We and other groups have 
developed novel algorithms for global and high-
resolution analysis of copy number changes using SNP 
arrays (56-59). In comparison to aCGH, the newly 
developed Genome Imbalance Map (GIM) algorithm 
(56) has advantages for detecting not only copy number 
aberrations but also allelic imbalance, including LOH 
and uniparental disomy (UPD) (24).
 This article presents a review of the outcomes of 
copy number analysis for HCC through a literature 
search of published reports, especially with regard to 
identification of candidate genes for oncogenes and 
tumor suppressor genes using aCGH and SNP arrays. 
Furthermore, we propose an algorithm for integration 
of expression data with gene loci, and discuss the 
chromosomal bias of gene expression and pitfalls of 

gene clustering.

Molecular karyotyping analysis for hepatocellular 
carcinoma using conventional comparative genomic 
hybridization

A number of studies of chromosomal alterations in 
HCC using conventional CGH have been reported 
(28-44), which were summarized according to etiology, 
histological grade, and tumor stage (60,61). A meta-
analysis based on 31 CGH analyses of 785 HCC 
nodules showed that gains on chromosome arms were 
observed on 1q (57.1%), 8q (46.6%), 6p (23.3%), and 
17q (22.2%), while losses were detected on 8p (38%), 
16q (35.9%), 4q (34.3%), 17p (32.1%), and 13q (26.2%) 
(60). Through this meta-analysis, Moinzadeh et al. 
further classified chromosomal alterations according 
to clinicopathological parameters, including hepatitis 
virus infection (31,33), tumor differentiation grade 
(32), and tumor progression (30,36,37,62). Comparison 
between HBV-positive and -negative cases indicated 
that losses at 4q, 8p, 13q, and 16q were positively 
correlated with HBV-positive HCC, whereas only 8p 
loss was more frequent in HCV-positive cases. With 
regard to tumor histological grade, chromosomal losses 
at 4q and 13q were significantly associated with tumor 
dedifferentiation. Although the number of dysplastic 
nodules analyzed by CGH was low, 1q gains were 
characteristic of the initiation of hepatocarcinogenesis 
(60). In addition to the clinical features described 
above, Pang et al. reported that gains at 1q and 6p were 
independent factors for liver cancer invasion (29). 
 If copy number analysis can predict the recurrence 
of HCC after resection, individualized therapy may be 
possible. Kusano et al. reported that recurrence was 
linked to loss at 13q, which was a variable independent 
of other factors on mult ivariate analysis (35) . 
Furthermore, Poon et al. reported a tumor progression 
model for HCC using bioinformatics analyses using the 
self-organizing tree algorithm (SOTA) in a large-scale 
study. Based on the patterns of significant chromosomal 
aberrations derived, they identified 4 HCC classes at 
3 different evolution levels, one group of which had 
poorer recurrence-free survival than the other 3 groups. 
They also showed that patients with 3q22-24 gain have 
both poorer recurrence-free and overall survival rates 
(40). 
 Thus, CGH analysis can make it possible not only to 
classify the clinicopathological parameters of the tumor 
but also to predict the prognosis of HCC patients, which 
will facilitate individualized therapy.

C o m p a r a t i v e g e n o m i c h y b r i d i z a t i o n f o r 
determination of liver cancer clonality

Multifocal cancer growth of HCC is due to either 
intrahepatic metastasis or multicentric origin, which 
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is clinically significant. However, methods for 
clinicopathological and morphological discrimination 
have not been sufficiently reliable for physicians to 
determine the appropriate treatment for patients with 
multiple HCC. To differentiate intrahepatic metastasis 
from multicentric origin in HCC, it has been shown 
to be useful to compare the clonalities of multifocal 
HCC using molecular methods, such as CGH analysis 

(38,39,63), DNA fingerprinting by LOH assay (64-66), 
and hepatitis B virus integration pattern (67-69), as the 
recurrent neoplasm inherits the same altered genome 
from the initial HCC.
 Chen et al. applied CGH for 31 primary and the 
corresponding recurrent liver tumors and calculated the 
clonal relationships, by which they could distinguish 
truly relapsed from second primary HCC in 22 of 
31 cases (39). On the other hand, using all of the 3 
molecular methods described above, Ng et al. succeeded 
in complete determination of the clonal relationships of 
25 nodules from 11 patients (38).
 Thus, evaluation of clonality of multifocal HCC 
using molecular methods is useful for physicians 
to allow precise determination of the treatment for 
multiple HCC. CGH is the most powerful and most 
readily available tool for this purpose.

Figure 2. Expression Imbalance Map (EIM) for detecting expression imbalance region in hepatocellular carcinoma (HCC). EIM enables 
identifi cation of many more genes by referring to the expanded area with lower luminance. (A) Expression imbalance region at an E value > 
2 and a range of expression gain > 3 Mb. (B) Expression imbalance region at an E value > 2 and a range of expression loss > 3 Mb. (Modifi ed 
from reference 23 with permission)

Figure 1. Genome Imbalance Map (GIM) of a representative 
hepatocellular carcinoma  (HCC) sample. GIM can detect not only 
genome dosage but also allelic imbalance status more precisely than 
aCGH analysis. (A) Allelic dosage analysis across the whole genome 
showed uniparental disomy in 13q31.2-34; (B, C) Fluorescence in 
situ hybridization and loss of heterozygosity analysis for validation 
of allelic imbalance in 13q. (Modified from Reference 24 with 
permission) 

Figure 3. Comparison of genomic alteration and gene expression 
status. Total gene dosage and expression analysis across the whole 
genome of a patient. Dots represent HCC/liver expression intensity 
ratio and the continuous lines indicate copy numbers. Gene expression 
levels changed in accordance with genomic alterations. (Modified 
from reference 24 with permission)
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High-resolution mapping of copy number aberrations 
and identification of target genes in hepatocellular 
carcinoma

In comparison to traditional CGH, aCGH can detect 
chromosomal aberrations with high resolution. By 
comparison between conventional CGH and aCGH 
in 19 HCC samples, Hashimoto et al. demonstrated 
that 80% of the target clones identified by aCGH 
were included in CGH analysis, while copy number 
alterations for FGR/SRC2, HRAS, THRA, and GSCL, 
of which clones were detected by aCGH, were not 
found by conventional CGH (46). 
 Using aCGH, the significance of correlations 
of frequent chromosomal aberrations with various 
clinicopathological features were investigated, and 
Katoh et al. demonstrated that chromosomal loss on 
17p13.3 and gain of 8q11 were independent prognostic 
indicators by multivariate analysis (44). Among the 
various clinicopathological features, differentiation 
grade is one of the best indicators of malignancy of 
liver cancer (70), and 4q and 13q were shown to be 
correlated with dedifferentiation of HCC (48). 
 In add i t ion to h igh- reso lu t ion mapping of 
chromosomal aberrations, aCGH is available for 
identification of candidate genes correlated with DNA 
copy number alterations for narrowing the list of 
oncogenes and tumor suppressor genes. Integrating the 
correlation between copy number alterations and gene 
expression profile, Patil et al. identified Jab1 as a target 
for 8q gain, which was suggested to have a potential 
role in the development of HCC by functional analysis 
(47).

Molecular karyotyping analysis of hepatocellular 
carcinoma using single nucleotide polymorphism 
arrays

The detection of genome-wide LOH is possible by 
comparing the calls for normal control and tumor 
samples using SNP arrays (51,53-55). The accuracy 
of this method was validated by comparison to PCR-
based microsatellite analysis by Hoque et al. (52). In 
addition to LOH, we and other groups have developed 
algorithms for detecting copy number alterations and 
allelic imbalance simultaneously using SNP arrays 
(56-59).
 Our method, named GIM analysis (Figure 1), was 
applied to 36 HCC samples and recurrent chromosomal 
aberrations in liver cancer were analyzed (24). That is, 
even fractional copy number, suggesting heterogeneity 
of cancer cells, was detected, and validated by 
fluorescence in situ hybridization. In this study, in 
addition to the gains of 1q, 5p, 5q, 6p, 7q, 8q, 17q, and 
20q, and LOH of 1p, 4q, 6q, 8p, 10q, 13q, 16p, 16q, and 
17p, which were significantly associated with HCC, we 
identified UPD and UPT on 13 regions, suggesting that 

genome dosage analysis misses many LOH regions with 
normal copy number. For example, on 6q24-25, which 
contained imprinting gene clusters and UPD regions 
in our data, we observed reduced levels of PLAGL1 
expression due to loss of the unmethylated allele. 
Thus, high-resolution GIM analysis can accurately 
determine the localizations of genomic regions with 
allelic imbalance, and when integrated with epigenetic 
information, a mechanistic basis for inactivation of 
tumor suppressor genes in HCC was elucidated.
 Furthermore, using much higher-density arrays, it 
will soon be possible to elucidate micro-homozygous 
deletion and chromosome amplification, and boundary 
regions suggesting breakpoints in liver cancer.

Systematic integration of expression profiles with 
gene loci

We have integrated gene expression data and gene 
locus information, and the regions in which the 
numbers of up-regulated and down-regulated genes 
were significantly concentrated were mapped on the 
chromosome (22). This method for detection of regions 
of mRNA expression imbalance is called Expression 
Imbalance Map (EIM), and we applied EIM analysis 
to gene expression data from 31 HCC tissues (23). 
Our data revealed that expression gains of 1q21-23, 
8q13-21, 12q23-24, 17q12-21, 17q25, and 20q11, 
and losses of 4q13, 8p12-21, 13q14, and 17p13 were 
significantly associated with HCC (Figure 2), consistent 
with previous reports using CGH in liver cancer 
(28,32,36,37,67,71-75). Furthermore, more poorly 
differentiated liver cancer contains larger numbers of 
chromosomal alterations, which are accumulated in a 
stepwise manner in the course of HCC progression.
 If not only gene expression but also cytogenetic data 
can be obtained from the same sample, integration of 
expression profile with chromosomal loci will enable 
comparison of gene expression with gene dosage. 
Pollack et al. measured parallel mRNA levels by 
microarray analysis and DNA copy number alterations 
by aCGH in breast cancer cells, and they reported 
that 62% of highly amplified genes show elevated 
expression and that DNA copy number influences gene 
expression across a wide range of DNA copy number 
alterations (26).
 In liver cancer tissues, we and other groups reached 
the same conclusions as Pollack et al. Furge et al. 
obtained regional expression biases (REBs) from a 
multiple span moving binomial test and demonstrated 
that REBs overlapped genetic abnormalities identified 
using aCGH in HCC (25). We have also demonstrated 
the effects of genome imbalance on the transcriptome 
by direct comparison with expression data from the 
same samples (24) (Figure 3).
 On the other hand, Huang et al. investigated the 
relationship between genomic DNA copy number 
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changes and transcriptional levels, and found that DNA 
copy number alterations appeared not to parallel the 
corresponding gene expression profiles in either HCC 
specimens or cell lines (45).
 Thus, gene expression profiles are subject to 
chromosomal bias and EIM can correlate gene 
expression to gene loci with high resolution and 
sensitivity.

Conclusions

Microarray analysis has contributed to identification 
of candidate genes and has been shown to be available 
for clinical application. In addition, clustering analysis 
of expression data and selection of predictor genes 
based on clinicopathological features could have 
been performed. However, bioinformatics technology 
indicated that gene expression profile is subject to 
chromosomal bias, i.e., clustering analysis involves the 
risk of being affected by gene structural abnormalities. 
To resolve this problem, combined and well-organized 
reconstruction of different molecular levels, including 
genetic aberrations, epigenetic changes, and expression 
alterations, is required to narrow the candidates 
responsible for cancer.
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