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Antibody engineering for use in cancer therapy

The ground-breaking establishment of monoclonal 
antibody (mAb)-production technology (1) was 
followed by the use of recombinant DNA technology 
in antibody engineering (2), which laid the groundwork 
for major advances in producing a variety of antibodies 
as therapeutics to treat patients with various diseases 
including cancer. Production of therapeutic antibodies, 
however, requires humanization of murine antibodies 
in order to reduce their immunogenicity in humans. 
Chimeric antibodies with mouse variable regions 
and human constant regions were constructed (3,4), 
but were found to still be immunogenic. Further 
improvements in producing therapeutic antibodies 
include complementarity-determining region (CDR) 
grafting of a murine antibody onto a human variable-
domain framework (5), screening of recombinant 
antibody libraries (6), and human antibody production 
from transgenic animals having human immunoglobulin 
gene loci (7).
 Antibody-based therapeutics has emerged as an 
important component of therapies for an increasing 
number of human malignancies. Rituximab (anti-CD20) 
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A number of studies during the last two decades revealed that the insulin-like growth 
factor І receptor (IGFІR) is an attractive target for cancer molecular therapy. Different 
molecular strategies have been developed and evaluated in experimental systems, and one 
such strategy involves anti-IGFIR antibodies, which have been rigorously tested for their 
therapeutic potential over the last 5-6 years. This mini-review thus introduces currently 
available IGFІR antibodies with a particular emphasis on epitope mapping and anti-
IGFIR antibody-induced cancer growth inhibition.

was the first FDA-approved agent for treatment of 
cancer, specifically non-Hodgkins lymphoma, in 1997. 
Herceptin (Trastuzumab; anti-HER2/neu), which was 
approved for clinical use in 1998, has successfully been 
used to treat metastatic breast cancer. These earlier 
studies encouraged screening of new and more effective 
target molecules expressed on various malignant cells 
by a number of laboratories and companies (8,9). Since 
accumulating evidence suggests that IGFІR is involved 
in mitogenic and anti-apoptotic effects of a variety of 
cancer cell lines, IGFІR is a potentially worthwhile 
molecular target (10-13).

IGFІR axis

The ligands for IGFIR are IGF- І and II, which consist 
of 70 and 67 amino acids, respectively. They share 
62% identity and also show structural homology 
to proinsulin (14). IGF-І is synthesized in the liver 
under the regulation of growth hormone and secreted 
into the bloodstream (endocrine action). IGFs also 
act in an autocrine/paracrine manner in peripheral 
tissues (15). Both ligands bind to IGFIR with equally 
high affinity, which leads to growth promotion and 
inhibition of apoptosis. IGFІR is a transmembrane 
glycoprotein consisting of two α subunits and two 
β subunits that are linked by disulfide bonds. The α 
subunit is completely extracellular and responsible for 
ligand-binding while the β subunit is a transmembrane 
protein whose cytoplasmic domain carries tyrosine 
protein kinase activity (16). The cytoplasmic domain 
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of the β subunit contains tyrosine residues, which 
are auto-phosphorylated after ligand stimulation, that 
act as docking sites for several substrates including 
insulin receptor substrates (IRSs) and Shc (17). 
Following these events, down-stream signal molecules 
including mitogen-activated protein kinase (MAPK) 
and phosphatidylinositol 3-kinase (PI3K)/Akt (18) are 
activated, leading to cell proliferation and attenuation 
of apoptosis. Furthermore, the actions of IGFs are 
regulated by the presence of IGF-binding proteins 
(IGF-BPs) 1-6 that are found in the circulation and 
extracellular fluids (17). 

Structural and functional relationships with respect 
to the insulin receptor

Molecular cloning of human IGFІR cDNA (19) 
revealed sequence homology with the insulin receptor 
(IR). Although both IR and IGFІR signaling pathways 
overlap, IR and IGFIR mainly play distinct roles in 
metabolic and mitogenic pathways, respectively. IGFІR 
is overexpressed in a variety of cancers in which IGFIR 
signaling plays an important role in proliferation, anti-
apoptosis, and tumorigenesis (20). IGFІR is also a 
key mediator of hormone-independent progression 
in prostate cancer cell lines (21). In addition, IGFІR 
can dimerize with IR, resulting in an IR/IGFIR hybrid 
receptor. This IR/IGFІR hybrid receptor also acts as a 
growth receptor through stimulation by IGF-І or IGF-ІІ 
(22,23).

Production of monoclonal antibodies against human 
IGFІR

The first anti-IGFІR mAb, αIR-3, was obtained from 
mice immunized by IR purified from human placentae 
that had to have contained IGFIR as a contaminant 
(24). αIR-3 was thus a kind of by-product that has since 
proven extremely useful. Later, more anti-IGFIR mAbs 
were produced using a variety of antigens including 
purified human placental IGFIR (25,26), purified ecto-
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IGFIR (27), and IGF-ІR-overexpressing cells (28).

IGF-I binding domains and epitope mapping for 
anti-IGFІR mAbs

Over the last two decades, studies on binding sites for 
ligands and mAbs took advantage of two structurally-
related receptors, in that receptor chimeras in which 
IGFIR and IR domains were shuffled within the 
framework of IR or IGFIR were recombinantly 
expressed in order to test the reactivity of the grafted 
domain. A good example for this is the study by 
Gustafson and Rutter (29), which identified the 
cysteine-rich domains of IR (230-285) and IGFIR 
(223-274) as primary determinants of hormone binding 
specificity. Consequent works by Mynarcik et al. (30), 
Whittaker et al. (31), and Keyhanfar et al. (32) more 
precisely mapped the IGF-I binding site to the cysteine-
rich domain on IGFIR using IR/IGFІR chimeras and 
point mutational analysis, but suggested other residues, 
especially Phe701, also play critical roles in ligand 
binding. Interestingly, the IGFІR ectodomain (L1-
cysteine rich-L2 domain), produced and structurally 
determined by X-ray crystallography, was unable to 
bind to the ligand (33). This may indicate that although 
the cysteine-rich domain contains the IGF-І binding 
site, the entire α subunit connected to the extracellular 
domain of the β subunit may be necessary to exhibit 
ligand-binding activity.
 In addition to the aforementioned approach, 
strategies commonly used to categorize various mAbs 
obtained include screening the effects of mAbs on IGF-I 
or -II binding to IGFIR and on cell growth as usually 
determined by DNA synthesis. Table 1 summarizes 
various anti-IGFIR mAbs whose epitopes and ligand 
binding effects have been reported. Siddle and his 
colleagues developed several mAbs and characterized 
their epitopes using domain-shuffled chimera receptors 
(28) and reported further analysis of epitope mapping 
as well as their effects on ligand binding (34). For 
example, 16-13 and 26-3, which bind to respective 

Number  Name  Epitope  Effect on ligand (IGF-Ι)-binding  References

   1  1H7  440-514  inhibition    Li et al. (25)
          Kusada et al. (35)
   2  3B7    62-184  stimulation   Xiong et al. (26)
          Kusada et al. (35)
   3  αIR-3  223-274  inhibition    Kull et al. (24)
          Gustafson et al. (29)
   4  24-31  283-440  no effect    Schumacher et al. (34)
   5  17-69  514-586  inhibition    Schumacher et al. (34)
   6  24-55  440-514  inhibition    Schumacher et al. (34)
   7  24-60  184-283  inhibition    Schumacher et al. (34)
   8  24-57  440-514  inhibition    Schumacher et al. (34)
   9  16-13    62-184  stimulation   Soos et al. (28)
 10  26-3  283-440  stimulation   Schumacher et al. (34)
 11  7C2  131-315  inhibition    Keyhanfar et al. (32)
 12  9E11  131-315  inhibition    Keyhanfar et al. (32)

Table 1. Summary of each anti-IGFІR mAb-epitope on the α subunit of IGFІR and effect on ligand binding
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62-184 and 283-440 residues on the IGFІR α subunit, 
are able to stimulate IGF-І binding whereas 24-60 
and 24-57, which recognize respective 184-283 and 
440-514 residues of the α subunit, almost completely 
inhibit IGF-І binding. The ligand-binding inhibition by 
24-60 is consistent with the notion that it competitively 
binds to the IGF-I binding domain. Ligand-binding 
inhibitory mAbs, whose epitopes are identified to be 
regions other than the IGF-I binding domain (cysteine-
rich domain), most likely either induce conformational 
changes in IGFIR upon binding or induce steric 
hindrance, resulting in low ligand-binding ability. In 
the case of ligand-binding stimulatory mAbs, however, 
conformational changes in the receptor caused by mAbs 
must be responsible for the observed higher binding 
ability of IGFIR. Our laboratory recently determined the 
epitopes of anti-human placental IGFIR mAbs, 1H7 and 
3B7 (35), by competitive inhibition assays using mAbs 
(24-57 and 16-13) produced by Soos et al. (28,34). 1H7 
and 3B7 exhibited opposite effects on ligand binding; 
that is, 1H7 inhibits ligand binding whereas 3B7 
stimulates it (25,26). The competitive inhibition study 
demonstrated that 1H7 recognizes 440-514 regions 
(since it competes with 24-57) whereas 3B7 binds to 
62-184 regions (since it competes with 16-13) on the α 
subunit (35).
 As described above, αIR-3, which inhibits IGF-І 
binding, recognizes the cysteine-rich domain that was 
determined to be the IGF-І binding site (29). 1H7 mAb 
binds to an epitope other than the IGF-І binding site, 
indicating that 1H7 induces conformational changes 

in the receptor or causes steric hindrance. There are 
conflicting reports regarding the ligand-binding domain 
(cysteine-rich domain). Delafontaine et al. prepared 
anti-IGFІR polyclonal Abs by immunizing rabbit with 
peptide fragments of the IGFІR α subunit (36). They 
reported that any Abs recognizing the cysteine rich 
domain did not interfere with IGF-І binding, but one 
group of Ab, RAB6, that recognizes the 38-44 residues 
near the N-terminus of the α subunit, inhibited IGF-І 
binding. The question of whether or not the cysteine-
rich domain is the major binding site for IGF-І is still 
unresolved. However the antibodies described by 
Delafontaine et al. are polyclonal and showed weak 
affinity for native receptor. Therefore it is inappropriate 
to compare these antibodies with other mAbs. The 
mAbs described above are summarized in Table 1 and in 
Figure 1, where each epitope of mAbs and its effect on 
ligand binding are shown with respect to the structure of 
the IGFІR α subunit.

Recombinant IGFІR antibodies for cancer therapy

Since the well-studied anti-IGFІR mAb, αIR-3, was 
shown to inhibit the growth of human cancer cells in 
vitro and in vivo (37-39), several other groups have 
reported on the potential for using anti-IGFIR mAbs 
to develop cancer therapeutics (40-43). With the 
advancement of recombinant antibody technologies, 
more therapeut ic ant i - IGFIR mAbs have been 
developed (Table 2). Li et al. first produced a chimeric 
IGFІR antibody consisting of a single chain variable 

Clone name  Generation technology       References

 scFv-Fc   Recombinant chimeric antibody derived from mAb   Li et al. (44)
 CP-751,871  Transgenic mouse producing human antibodies   Cohen et al. (47)
 A12   Phage display screening     Burtrum et al. (48)
 19D12   Transgenic mouse producing human antibodies   Wang et al. (52)
 h7C10   Recombinant humanized antibody derived from mAb   Goetsch et al. (53)

Table 2. Summary of therapeutic antibodies targeting IGFІR

Figure 1. Schematic representation of the IGFΙR α subunit (1-579) in relation to epitopes of anti-IGFIR mAbs. “N” and “C” indicate the N 
terminus and C terminus of the IGFΙR α subunit (1-579), respectively. “L”, “Cys-rich”, and “Fn III” are respectively the leucine-rich repeat, 
cysteine-rich domain and fi bronectin III repeat domain. Anti-IGFIR mAbs listed in Table 1 are marked with their corresponding numbers at their 
epitope sites (amino acids of N-termini in the regions recognized by each mAb). The effects of anti-IGFIR mAbs on ligand binding are shown by 
bars; the dashed line indicates inhibition, the dotted line indicates stimulation, and the solid line indicates no effect.
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fragment (scFv) derived from mAb 1H7 and the human 
IgG1 Fc region (44). This recombinant antibody, named 
IGFІR scFv-Fc, was shown to inhibit growth of the 
human breast cancer cell line MCF7 in vitro and in vivo. 
Sachdev et al. revealed that scFv-Fc has an agonistic 
effect on MCF-7 cells but that the long-time treatment 
of MCF-7 cells with scFv-Fc down-regulated IGFІR, 
resulting in the cancer cells becoming refractory to 
ligand stimulation (45). Breast cancer tumor growth 
in vivo was inhibited by scFv-Fc in two different 
systems, MCF-7 (45) and T61 (46). In combination with 
Tamoxifen, αIGFІR scFv-Fc treatment suppressed the 
growth of T61 tumors in vivo more significantly than 
scFv-Fc treatment alone (46). Cohen et al. produced an 
anti-IGFІR mAb called CP-751,871 from transgenic 
mice and demonstrated that this mAb inhibits tumor 
growth alone or in combination with chemotherapy in 
vivo (47). A fully human anti-IGFIR mAb, A12, that 
was prepared by screening of a phage displayed human 
Fab library exhibited tumor growth inhibition on breast, 
colon, pancreatic, and prostate cancer cell lines in vivo 
(48,49). A12 was also tested for its efficacy when used 
in combination with chemotherapy or radiotherapy 
(50,51). Another fully human antibody 19D12, which 
was produced from transgenic mice by Wang et al. 
(52), was found to significantly inhibit tumor growth 
in vivo as a single agent. Goetsch et al. produced a 
recombinant humanized anti-IGFIR antibody, h7C10 
(53). This antibody showed in vivo antitumor efficacy 
as a single agent against established breast (MCF-7) 
and non-small cell lung cancer (A549) xenografts when 
administered intraperitoneally (53). Ligand-independent 
down-regulation of both IGFІR and hybrid receptors 
(IR-A or IR-B/IGFІR) was demonstrated upon long-
term incubation of cells expressing IR-A/IGFІR or 
IR-B/IGFІR with h7C10 (54), indicating that this mAb 
is a potent inhibitor of both IGFIR and hybrid receptors.

A major mechanism for anti-cancer growth by 
IGFΙR antibodies

Although several therapeutic strategies for targeting 
IGFІR, including antisense RNA and tyrosine kinase 
inhibitors, have been developed (55-57), monoclonal 
antibody therapy has emerged as the most promising 
approach for anti-cancer applications. What follows is a 
brief summary of how therapeutic anti-IGFІR antibodies 
work, as is illustrated in Figure 2. Most anti-IGFІR 
antibodies developed for cancer therapy thus far seem to 
down-regulate (internalize and degrade) IGFIR, thereby 
making cancer cells insensitive to ligand stimulation 
(45-49,52,53). Anti-IGFІR antibodies induce receptor 
degradation mainly via endosomal- and lysosomal-
pathways (45). The receptor degradation not only causes 
the loss of cell-sensitivity to IGFs resulting in growth 
inhibition but also induces apoptosis resulting in cell 
death. This receptor degradation effect is attributable 

to the multivalency of antibodies such as IgG or scFv-
Fc, since monomeric anti-IGFІR Fab fragments were 
not able to trigger receptor degradation (52). Receptor 
down-regulation is very effective in cancer cells 
overexpressing IGFIRs. Anti-IGFІR antibodies are not 
believed to down-regulate IGFІR in normal cells since 
anti-IGFІR antibodies that cross-react to mouse IGFІR 
did not cause any significant side effects in mice. This 
observation is consistent with the notion that anti-IGFІR 
antibody-induced down-regulation occurs only in cancer 
cells overexpressing IGFIRs but not in normal cells that 
express lower levels of IGFІRs (49).
 Anti-IGFІR antibodies also down-regulated IR (58). 
IR can form a heterodimer with IGFІR, resulting in 
IR/IGFIR hybrid receptors. IR exists in two isoforms 
of IR-A and IR-B (17). Since IR-A is expressed 
predominantly in cancer cell lines and cancerous 
tissues, IR-A/IGFІR hybrid receptor may exist as a 
major type in cancer cells. Both IR-A holo-receptor and 
IR-A/IGFІR hybrid receptor have high affinity for IGF-
II, thus having more of a growth effect than a metabolic 
effect (23,59). Zhang et al. recently reported that down-
regulation of IGFІR by small interfering RNA increases 
sensitivity of breast cancer cells to insulin (60). Because 
IR also activates signaling pathways similar to IGFIR 
in cancer cells, agents targeting both receptors may be 
necessary to disrupt the malignant phenotype regulated 
by this growth factor system. Thus, IR-A targeted 
antibodies will be the next generation of antibodies to 
be developed.

Concluding remarks

Over the last decade, significant progress has been 
made in the development of anti-IGFІR antibodies for 

Figure 2. Schematic illustration for IGF signaling and IGFI receptor 
degradation in IGFІR-expressing cells. When ligands, IGF-І or IGF-ІІ, 
bind to the receptor, down-stream signaling molecules are activated, 
leading to cell proliferation and counteracting apoptosis through 
MAPK and PI3K/Akt pathways. Anti-IGFІR antibody treatment 
not only prevents ligand-binding but also causes receptor-clustering 
followed by degradation through endosomal/lysosomal pathways.
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therapeutic use. Several are now undergoing clinical 
trials. As these trials move forward, they should 
elucidate whether disruption of IGFIR signaling results 
in relevant clinical outcomes.
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