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1. Introduction

It has been fifty two years since the first methicillin-
resistant Staphylococcus aureus (MRSA) was isolated 
by Patricia Jevons, only two years after the premier 
clinical utility of the antibiotic methicillin (1). MRSA 
is one of the most parlous pathogens, responsible for a 
great number of human infections all around the world 
(2-5) (Figure 1). From the 1980s, new strains of MRSA 
emerged which led to continuous pandemic infections 
of MRSA around the world. At present, many countries 
report that MRSA strains account for about 25-50% of 
infectious Staphylococcus aureus in hospitals (6). In 
contrast, some other countries such as some northern 
European countries have lower MRSA infection rate 
(often < 1%), most probably due to strict search-and-
destroy and surveillance measures, as well as control 
in antibiotic prescriptions. Recently, a Japanese study 
suggests that antibiotic consumption without restraint 
leads to increased MRSA virulence with time (7).
 MRSA can produce a series of toxins and present 
multiple resistance to antibiotics. Most of these functions 

are derived from mobile genetic elements (MGEs) on 
the genome (8,9). Resistance to methicillin primarily 
stems from acquisition of the mecA gene, not inherently 
existent in this strain, which produces a modified 
penicillin-binding protein (PBP2a) with lower affinity 
to β-lactams (10). Lately, MRSA which is negative for 
mecA has been discovered in human populations in the 
UK. The new diverse mecA was about 70% homologous 
to Staphylococcus aureus mecA (11). The continuous 
emergence of mutations of key genes makes it more 
difficult to prevent and control MRSA.
 While for a long time MRSA infections were 
detected in hospitals (healthcare-acquired/associated-
MRSA, HA-MRSA), however, in the recent decade 
infections have appeared in community (community-
acquired/associated-MRSA, CA-MRSA) and also 
derived from livestock (livestock-associated-MRSA, 
LA-MRSA). Thus, MRSA can not only be taken as a 
hospital-associated problem, but also a society wide 
problem. This review will give an overview over the 
genome structure, pathogen and molecular biological 
characteristics of MRSA, and vaccines. Through this 
analysis, a light may be shed on the future prevention 
and control of MRSA.

2. Genome structure of MRSA

The Staphylococcus aureus genome was sequenced 
in detail recently (12). In the last period of time, there 
have been many related sequencing results released on 
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the NCBI website. Making a comprehensive survey 
of the great amount of sequencing data, three major 
points were revealed: i) there is a backbone of core 
genes which comprises about 97% of all the genes and 
is highly conserved; ii) except for backbone genes, 
there is a set of over 700 genes, named core variable 
(CV) genes which defines the Staphylococcus aureus 
lineage by various distribution patterns in the genome; 
iii) a group of mobile genetic elements (MGEs) genes 
exist discretely in the genome which can move around 
within the genome and play a critical role in the spread 
of virulence factors (13-16) (Table 1). CV genes have 
a major function in encoding surface proteins and 
structures which can interact with human genes and 
their regulators (14).
 At present, Staphylococcus aureus is classified 
based on clonal complexes (CCs) via multilocus 
sequence typing (MLST), for example, CC1, CC5, and 
CC10. The MLST method is used to sequence seven 
conserved genes and allocate a sequence type (ST) 
number to a validated strain (17). One CC type can be 
subtyped into several different STs by single nucleotide 
polymorphisms (SNPs) on the seven house-keeping 
genes.
 MGEs can be defined as a kind of fragments of 
DNA which transfer into the host cell to replicate or 
integrate into host DNA. The antibiotic resistance and 
virulence of Staphylococcus aureus are acquired from 
MGEs (18). Horizontal gene transfer (HGT) of these 
MGEs leads to higher invasiveness, virulence, anti-
microbial resistance and host adaptation, but each MGE 
can only transfer into certain lineages not all  lineages.
 Various types of MGEs have been identified in 
Staphylococcus aureus: plasmids, Staphylococcus aureus 
pathogenicity islands, bacteriophages, transposons, 

staphylococcal cassette chromosome mec (SCCmec), 
and genomic islands (19). Among these, the most 
important MGEs for Staphylococcus aureus are the 
methicillin resistance gene mecA on the different 
SCCmec, the bacteriophages produced Panton-Valentine 
leukocidin (PVL) toxin, and many resistance elements 
encoded by plasmids and transposons (20). MGEs 
in Staphylococcus aureus can largely strengthen the 
pathogenic and resistance ability of this strain. It has 
been reported that MGEs are able to transfer, lose, and/or 
acquisition among different strains (14).
 HGT is limited among various lineages by the hsdS 
gene. Different lineages have different hsdS genes 
which have different DNA modification and digestion 
sites. As a result, the lineage can recognize domestic 
DNA and destroy alien DNA (21). The hsdS genes 
could play a role of biomarker to differentiate different 
lineages (22).

3. Present pathogenic characteristic of MRSA

3.1. HA-MRSA

3.1.1. Antibiotic resistance

From a clinical standpoint, a critical situation that 
surgeons have to confront when treating Staphylococcus 
aureus infections is antibiotic resistance. Resistance 
to the first antibiotic, penicillin, occurred in the 1940s 
(23). In 1942, a penicillin-resistant Staphylococcus 
aureus strain was successfully found (24). Intrinsically, 
an enzyme called penicillinase caused the resistance 
to penicillin (25). Penicillinase cuts the β-lactam 
ring which is a core of β-lactam antibiotics such 
as penicillin and its derivatives. At present, most 
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Figure 1. Worldwide prevalence of hospital-acquired methicillin-resistant Staphylococcus aureus. Epidemiological data from 
various health agencies and medical laboratories of different countries showed that the epidemiological situations of MRSA were 
much different in different countries and regions. The situation was rather severe in East Asia, Southeast Asia, North America, and 
South America. In the same region, different countries have different situations. In East Asia, prevalence rates in Japan and Korea are 
more than 50%, while those in the rest countries are about 25-50%. In Southeast Asia, prevalence rates in Indonesia and Singapore 
are 25-50% and those in the rest countries are more than 50%. In West Europe, Great Britain, Spain, Portugal, and Italy have a 
prevalence of 25-50%, and the rest are 10-25%. In North America, Canada is 5-10%, Mexico is 10-25%, Alaska of America is 25-
50%, and the other states of America are more than 50%. In South America, Paraguay, Panama, and Columbia have a prevalence of 
25-50%, while the rest countries are more than 50%. In Africa, data only represents the prevalence in North Africa and South Africa 
since the epidemiological data of Middle Africa is absent.
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causes the glycopeptides to be off target. In the recent 
decade, the so-called VISA (vancomycin-intermediate 
Staphylococcus aureus) strains have attracted more 
attention in which minimum inhibitory concentrations 
(MICs) of vancomycin are ≥ 4 mg/L, and the strains, 
so-called hVISA strains, with vancomycin MICs are 
≤ 2 mg/L that show heteroresistance. These trains 
always lead to a large amount of glycopeptidetreatment 
failure in the clinic (31,32). van Hal et al. summarizes 
that the treatment failure rate of hVISA infection 
is 2.5-fold higher than vancomycin-susceptible 
Staphylococcus aureus (33). These strains can cause 
prolonged bacteraemia for the mutations in the agr 
system which show decreased toxin generation and 
slow down virulence being examined in animal models 
(34,35). Moreover, a mutation in stp1 which encodes a 
serine/threonine phosphatase was reported to increase 
vancomycin resistance and decrease virulence (36). 
However, the relevance between vancomycin treatment 
failure and agr dysfunction is still in the dark, although 
a study indicated that agr dysfunction was related to a 
worse clinical treatment effect (37).
 A number of substitutions in genes including 
vraSR and graSR have been reported to enable 
susceptible MRSA strains to transform to hVISA and 
hVISA to VISA (38). The rpoB mutations selected 
by rifampicin were found to have multiple resistance 
to both vancomycin and daptomycin by a possible 
mechanism of increased cell wall thickness and these 
mutations always were found in VISA strains (39). 
Meanwhile, rifampicin-resistant strains were found to 
contain vancomycin resistance (40), and the researchers 
suggest the rpoB mutations play an important role in 
vancomycin resistance. These results may give a reason 

infectious Staphylococcus aureus  strains own 
resistance to penicillin and its derivatives. To resolve 
the dilemma with penicillin-resistant Staphylococcus 
aureus, methicillin was developed which stemmed 
from penicillin but can avoid penicillinase cleavage. 
Methicillin was used in the clinic in 1959; but just one 
year later, a methicillin-resistant strain was detected 
in the UK (26). Unfortunately, the mechanism of 
methicillin resistance protects Staphylococcus aureus 
from the whole group of β-lactam antibiotics including 
penicillins, cephalosporins and carbapenems. In recent 
times, many MRSA strains have acquired resistance to 
multiple antibiotics, such as ciprofloxacin, clindamycin, 
tetracycline, erythromycin, and so on. (27). A recent 
research result from the CDC of the US confirms this 
and shows resistance to tetracycline and clindamycin 
in 9% and 6.2% of strains respectively among 823 
infectious strains lately isolated (28). Furthermore, 
these strains contain transferable antibiotic-resistant 
plasmids.
 Until now, the clinical therapy of MRSA infection 
mainly depends on utility of the glycopeptides 
vancomycin and teicoplanin, although at the same time 
many others are also employed, such as co-trimoxazole, 
tetracyclines, clindamycin, fusidic acid, linezolid, 
daptomycin, tigecycline, telavancin, and ceftaroline. 
For decades, glycopeptides, especially vancomycin, 
have been considered as the gold standardfor therapy 
of MRSA infections until the appearance of resistance 
to these antibiotics in enterococci and subsequently 
in Staphylococcus aureus were found (29,30). In 
enterococci, glycopeptide resistance is due to mutation 
of the terminal alanine in the operons which promote 
the transferable cell wall-producing gene transcript and 

Table 1. Mobile genetic elements (MGEs) validated in Staphylococcus aureus

MGE

Bacteriophages toxins

Pathogenicity islands

Plasmids and transposons

Staphylococcal cassette 
chromosome mec (SCCmec)

genoms

Description

Lysogenic phage carry toxin genes that can 
enhance the virulence of the bacterial host

A distinct class of genomic islands acquired 
by microorganisms through horizontal gene 
transfer

Plasmids and transposons carry antibiotic, 
heavy metal and disinfectant resistance 
determinants, toxins, arginine metabolism

A mobile genetic element that carries the 
central determinant for broad-spectrum 
beta-lactam resistance encoded by the mecA 
gene

A part of a genome that has evidence of 
horizontal origins, involving in pathogenesis

Instances

Staphylococcal enterotoxin A (SEA), chemotaxis 
inhibitory protein (CHIP) staphylokinase , PVL 
Staphylococcal complement inhibitor (SCIN)

Encode TSST, MDR transporters, superantigens 
(SEB, SEC), fusidic acid-resistant genes

Plasmids: several resistance determinants such 
as resistance of blaZ, blaI, and blaR1 toβ-lactam 
antibiotics
Transposons: Tn552 carries bla for penicillinase

SCCmec types I–XI

Three families: vSAα, vSAβ, vSAγ. Containing 
genes encoding phenol-soluble modulins (PSMs), 
responsible for pro-inflammatory activity, 
enterotoxins and bacteriocin production

Reference

(13-15,19)

(13,15,19)

(13,15,18,20)

(13,15,16,19)

(13,15,17,19)
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for the worse outcomes in treatment of patients showing 
bacteraemia and endocarditis with both vancomycin 
and rifampicin (41-43). Some case reports suggested 
that employment of rifampicin in combination with 
other antibiotics can heal biofilm-related infections 
(44,45). Thus, rifampicin combination therapies can 
be utilized to treat biofilm-related infections although 
not for bacteraemia and endocarditis. The mechanisms 
of MRSA resistance to daptomycin are still poorly 
understood. There are certain possible explanations 
including an increased positive surface charge caused 
by mutations of mprF and dltABCD, increased cell wall 
thickness caused by mutations of rpoB and mutations 
in cls and pgsA which change membrane lipids. 
Sometimes these factors work together (46-48).
 Linezolid is another effective antibiotic and up 
until now has not encountered much  resistance. Most 
existing resistance is derived from mutations on the 
target site on the 23S rRNA of the ribosome (49). 
However, MRSA has multiple (commonly 4 to 6) 
copies of the 23S rRNA genes, and resistance can just 
be induced by multiple mutations (50). Furthermore, 
MRSA strains with multiple mutations always show 
lower activity (51,52). As a result, linezolid-related 
MRSA infections are not a significant problem for 
healthcare although it has been utilized for more than 
one decade (53). 

3.1.2. Colonization

Medical waste, contaminated devices, and patients 
or medical staffs who carry MRSA play a role as an 
infectious source of MRSA in hospitals. Nostrils are 
a major site for carrying MRSA, and the relativity 
between nasal carriage and infectious diseases has 
been reported eighty years ago (54). Then a theory 
emerged which suggested the nose colonization of 
MRSA led to infectious diseases (55,56). Besides the 
nose, perineum and throat are also colonization sites 
of MRSA, but there are few research studies on these 
sites. Obviously, prevention of MRSA carriage could 
decrease the infection probability. A recent study 
revealed that mupirocin is efficacious in short-term 
prevention of MRSA, such as administration before 
surgery in hospitals (57). It is reported that about 20% 
of people in the population are persistent nasal carriers 
of Staphylococcus aureus (54), and carriage rates 
differentiate in different ethnic groups and are higher 
in patients with certain underlying medical conditions. 
These indicate that host factors are important for 
colonization of Staphylococcus aureus. However, 
the molecular mechanisms of these phenomena 
are still unknown. Thus, focusing on molecular 
mechanism research will be a key to understand MRSA 
colonization.
 Surface-anchored Staphylococcus aureus-binding 
proteins which can bind to exposed human matrix 

molecules improve the nasal colonization of MRSA. 
Clumping factor B and Staphylococcus aureus surface 
proteins G and X (SasG, SasX) have been shown to 
combine to nasal epithelial cells (58-60). Among them, 
SasX lately has attracted more attention because it was 
found to play an important role in an MRSA epidemic 
(60). SasX existed in a MGE mainly belonging to the 
ST239 MRSA strain which was a major ringleader 
of MRSA infections in Asia areas. It was discovered 
that SasX played a wide role in nasal colonization, 
biofilm generation, immune evasion and virulence in 
animal infection models. Thus, SasX may be a critical 
element promoting ST239 spread in Asia. The way 
SasX functions may providereference for doctors and 
researchers to understand how the spread of colonization 
and virulence elements through HGT drives an MRSA 
epidemic. Teichoic acids, a kind of surface polymer of 
Staphylococcus aureus, helped make MRSA able to 
colonize the human nose (54). Moreover, MRSA has 
some mechanisms resistant to antibacterial peptides 
which cause the subsequent innate immune reaction (61).

3.1.3. Biofilm

Biofilms are a group of microorganisms in which cells 
stick to each other on a surface. These adherent cells 
are frequently embedded within a self-produced matrix 
of extracellular polymeric substance (EPS). Biofilm 
EPS is a polymeric conglomeration generally composed 
of extracellular DNA, proteins, and polysaccharides. 
Biofilms can form on living or non-living surfaces, 
such as medical settings (62,63). Biofilms protect 
MRSA from antibiotics and host immune defenses 
and then MRSA remains adherent on biotic or abiotic 
surfaces. Thus, biofilms can play a role in prolonging 
the duration of infection and promoting colonization. 
Whether Staphylococcus aureus clones in the nose 
form biofilms is still an argument, but comparison of 
physiological situations between nasal colonization and 
in biofilms can bring certain hints. Nasal colonization 
and biofilms of Staphylococcus aureus share the same 
trait of keeping relatively calm compared to the invasive 
situation of toxin-producing acute Staphylococcus 
aureus disease. It was reported that many colonizing 
strains are deficient in global virulence regulator Agr 
(64). Of note, there is a study which indicates that 
biofilmformation has been associated with the spread of 
some clones such as the Brazilian MRSA ST239 strain 
which is considered an ancestor of the Chinese SasX 
positive ST239 strains (65).

3.1.4. Virulence

Virulence of MRSA includes multiple elements such 
as toxins, immune system invasion and other factors. 
In different Staphylococcus aureus strains, there are 
various toxin pools due to the reason that toxins are 
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encoded on MGEs which are variable in different 
strains. These MGE-derived toxins have various types 
including superantigens such as toxic shock syndrome 
toxin (TSST), some leukotoxins such as Panton-
Valentine leukocidin which is typical factor in CA-
MRSA, and exfoliative toxins. However, α-toxin, 
β-toxin, some leukotoxins and phenol-soluble modulins 
(PSMs) are synthesized in almost all strains. Different 
expression levels of toxin genes lead to different 
pathogenic activities. For example, obvious pathogenic 
differences are observed between Agr-positive strains 
and Agr-negative ones, and Agr is able to manage many 
toxin genes (66).
 Surface proteins play many critical roles in MRSA 
pathogenesis. They have many functions including 
cell wall metabolism, immune evasion, bacterial 
aggregation and biofilm formation (67). Most surface 
genes are located on the core genome, so the virulence 
of MRSA may not be directly related to surface 
proteins. SasX on MGE promotes MRSA colonization 
by boosting bacterial aggregation which shares similar 
characteristics compared to aggregation caused by 
surface proteins (60).
 Regulator systems, such as Agr, SaeRS, SarA, and 
so on, contribute to strengthen the virulence of MRSA. 
Agr, having been long acknowledged as a regulator of 
virulence, plays an important part in toxin production 
(68). Recent research suggested that Agr may increase 
surface protein expression in a strain-dependant way 
(69). Based on official guidelines, methicillin resistance 
of MRSA is generated by mecA but the mechanism is 
poorly understood. Lately, some studies indicated that 
core genome-encoded regulators and the mec locus both 
can affect Agr (69,70).

3.2. CA-MRSA

3.2.1. Epidemiology

Before the 1990s MRSA was only known as a 
healthcare-associated disease in hospitals. At that 
time MRSA infection cases appeared in communities 
without any records of hospitalization. CA-MRSA is 
a moderately severe infection of the human skin and 
soft tissues. At present, CA-MRSA has emerged in 
most areas of the world. All of the Staphylococcus 
aureus species have appeared in CA-MRSA strains 
(71). The terrible spread of CA-MRSA is thought to be 
associated with strengthened virulence and increased 
transmissibility compared to former HA-MRSA. In the 
last decade, much research was performed to illuminate 
the molecular mechanism of virulence, but research on 
transmissibility did not make much progress (72).

3.2.2. Transmissibility

Spread of CA-MRSA was attr ibuted to direct 

transmission from patients and/or hospital staff. But, in 
fact, CA-MRSA also showed transmissibility activity. 
CA-MRSA commonly contains SCCmec elements of 
type 4 or type 5 which have stronger transmissibility 
as a result of a smaller size than other elements. The 
arginine catabolic mobile genetic element (ACME) of 
certain strains contains a spermidin acetyltransferase 
gene (speG) which transfers resistance to spermidin and 
other polyamines (73). Furthermore, there is an arginine 
deiminase and an oligopeptide gene cluster located on 
ACME, which can promote colonization of CA-MRSA, 
but there are still no unimpugnable experimental results 
to support this theory (72). Meanwhile, CA-MRSA 
utilizes surface adhesions in a different way from other 
strains and  mechanism studies are still in progress (69). 

3.2.3. Virulence

The hypothesis that CA-MRSA has higher virulence 
than HA-MRSA to infect humans has been validated 
in animal infection models and has gradually become 
common sense. Evidence of increased virulence of 
CA-MRSA is that strains show considerable ability to 
evade attack from neutrophils which are the frontline 
defense against bacteria in the human body. There 
are two hypotheses to explain this evasion capacity of 
CA-MRSA. One is that CA-MRSA acquired MGEs 
containing Panton-Valentine leukocidin (PVL) (74). 
The other is that CA-MRSA promotes expression of 
core genome-encoded virulence genes, such as PSM 
cytolysins, α-toxin and so on (75). Actually, these two 
hypotheses can work together to increase the virulence 
of CA-MRSA.
 Panton-Valentine leukocidin (PVL), which is 
associated with staphylococcal skin and pulmonary 
infections, is a member of the bi-component family 
of staphylococcal leukocidins. In the CA-MRSA 
epidemic, PVL genes lukS and lukF were discovered in 
CA-MRSA strains, and interestingly, PVL is typically 
absent in HA-MRSA (74). Thus, PVL is supposed 
to play an important role in CA-MRSA virulence. 
However, two experimental results cast a damper over 
the assumption. The first is that even in strains without 
PVL genes , virulence is still strong (76). The second 
is that isogenic PVL gene deletion mutants did not 
decrease the CA-MRSA virulence in a few animal 
models (77,78).
 Phenol-soluble modulins (PSMs) are amphipathic 
peptides produced by staphylococci that have multiple 
functions in pathogenesis (79). PSMs have showed 
virulence increasing capacity in several animal models. 
Although PSMs exist in all Staphylococcus aureus 
strains, the expression level in CA-MRSA is obviously 
higher than HA-MRSA (75).
 Cytolysin α-toxin greatly increases virulence 
of CA-MRSA in some animal models (76,80). The 
α-toxin was proven to significantly increase virulence 
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by lysing a series of cells, such as macrophages and 
erythrocytes, and cause collapse of the epithelial barrier 
(81). Recently, a core genome-encoded toxin, SEIX, 
was reported to lead to CA-MRSA pneumonia in a lung 
infection animal model (82).

4. Vaccines

In consideration of research results until now, a 
vaccine strategy would be an economical measure to 
prevent and control MRSA infections, but this will be 
a serious challenge for researchers to develop effective 
vaccines. A vaccine which targets two surface antigen 
clusters of MRSA was reported to fail in a Phase 
III trial (83). A few vaccines are still in their early 
stage of development, and  no one has gotten close to 
authorization (84). This is a long road for investigators 
to walk. 

5. Conclusion

For decades, doctors and researchers have been fighting 
with MRSA continuously and every time when new 
antibiotic weapons were developed  MRSA could raise 
novel shields of resistance accordingly. In the war with 
MRSA, although humans have obtained partial success, 
the challenges from antibiotic-resistant Staphylococcus 
aureus are still severe. Especially during recent years, 
the appearance of CA-MRSA brought humans to a 
novel battle field. The hard work of many laboratories 
shed a light on the relevance between genetic mutations 
and MRSA phenomena, such as antibiotic resistance, 
virulence, and biofilms. The mutations of MRSA could 
be ideal targets for sequential development of novel 
antibiotics and vaccines.
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