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1. Introduction

Spinal cord injury (SCI) is a serious injury of the central 
nervous system and its main clinical manifestations 
include movement, sensory, and sphincter dysfunction 
below the level of injury, which lead to a consequent 
reduction of the quality of life. The injury mainly 
results from contusion, compression or stretch of 
the spinal cord. An epidemiological study based on 
a nationwide database reported that SCI accounted 

for 16.87% of spinal trauma in Mainland China and 
the incidence of SCI increased annually during the 
study period (1). Operative treatment and conservative 
treatment are employed in the management of SCI. 
However, up until now there is no evident effective 
treatment for SCI due to this injury`s complicated 
pathophysiology (2). The focal mechanical insult 
disrupts tissue homeostasis during the acute phase 
that induces secondary injury processes. Multiple 
destructive cascades in the secondary injury processes 
cause the necrotic and apoptotic death of neurons, 
astrocytes, and oligodendrocytes, which spreads beyond 
the initial injury site and leads to irreversible axonal 
damage and demyelination (3). It has been recognized 
that axonal regeneration is the only way to restore 
functions for decades after serious SCI that interrupt 
the long tracts mediating motor and sensory function 
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(4). The hurdle for axonal regeneration in SCI include: 
glial scar tissue and molecular barriers, inhibiting 
microenvironment (such as chondroitin sulphate 
proteoglycans and myelin-associated inhibitors), 
and the lack of sufficient neurotrophic support (5,6). 
Therefore, the key point of applying stem cells to treat 
SCI is to build a microenvironment conducive to the 
survival and differentiation of stem cells and regulate 
neurotrophic factor expression. Genetic modification 
of adult mesenchymal stem cells (MSCs) is expected 
to overcome the hurdle for axonal regeneration and has 
been applied in experimental animal models of SCI.

2. Mesenchymal stem cells

Embryonic stem cells (ESCs) and neural stem 
cells (NSCs) have been used to repair SCI. These 
stem cells survived, differentiated into astrocytes, 
oligodendrocytes, and neurons, and promoted neural 
functional recovery (7). However, these stem cells can 
also differentiate into inappropriate cells, resulting in 
tumor formation (8). Moreover, NSCs have a tendency 
to differentiate into glial cells after they are transplanted 
into an impaired central nervous system. Therefore, 
NSCs could promote astrogliosis and the extension of a 
glial scar (9). 
 At present, adult MSCs have been applied in 
experimental animal models and clinical trials of SCI 
(10). MSCs are multipotent nonhematopoietic cells 
with the potential to differentiate into osteoblasts, 
chondrocytes, adipocytes, as well as myogenic 
and neuronal cells (11). MSCs are a heterogeneous 
population that can be isolated from several tissues, 
such as bone marrow, adipose, umbilical cord blood, 
Whartons jelly, amnion, etc. MSCs possess many 
properties directed to the hurdle for axonal regeneration 
in SCI (Figure 1). Once MSCs arrive at an injury, they 
can secrete a variety of cytokines, such as insulin-like 
growth factor (IGF), brain-derived neurotrophic factor 
(BDNF), vascular endothelial growth factor (VEGF), 
granulocyte-macrophage colony stimulating factor 
(GM-CSF), fibroblast growth factor (FGF)-2, and 

transforming growth factor (TGF) (12). MSCs down-
regulate apoptotic molecules and up-regulate anti-
apoptotic molecules in SCI animal models. In addition, 
MSCs increase serum interleukin (IL)-10 and decrease 
tumor necrosis factor (TNF)-α. T cells change from pro-
inflammatory Th1 cells to anti-inflammatory Th2 cells 
and macrophage phenotypes change from M1 (immune 
surveillance) to M2 (down-regulating immune response) 
in the presence of MSCs. The immunophenotype of 
MSCs are major histocompatibility (MHC) I positive 
and MHC II negative and MSCs also lack costimulatory 
molecules CD40, CD80, and CD86. Therefore, MSCs 
have an immunomodulatory effect (13).
 Multifunctional therapies seem to be extremely 
promising because they counteract multiple injury 
mechanisms and combine both neuroprotective and 
neuroregenerative agents (14). Although MSCs secret 
some cytokines, the levels of these cytokines are not 
enough for SCI repair. Genetic modification of MSCs 
can increase secretion of peptides or total length 
proteins with potential to repair SCI and promote the 
survival of themselves and the survival or regeneration 
of neurons. There are many proteins that have been 
applied to modified MSCs, such as neurotrophic factors 
(neurotrophin 3, brain-derived neurotrophic factor, glial 
cell line-derived neurotrophic factor, nerve growth factor, 
and MNTS1), receptor tyrosine kinases (tropomyosin-
related kinase C), and hepatocyte growth factor (Table 1).

3. Proteins with potential to repair SCI

3.1. Neurotrophic factors

3.1.1. Neurotrophin 3 (NT-3)

NT-3 has been shown to act as a neuroprotective 
agent (15). NT-3 can promote axonal growth and the 
differentiation of sensory neurons, motor neurons, 
dopaminergic neurons, and other neurons. The effect 
of NT-3 promoting neuron growth is due largely to 
activating tropomyosin-related kinase (Trk) C (16). The 
co-expression of NT-3 and BDNF had an anti-apoptotic 
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Figure 1. MSCs possess properties directed to the hurdle for axonal regeneration in SCI.
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in significant improvement of locomotor function and 
restoration of electrophysiological properties in rats via 
a recombinant adenoviral vector (Adv) into a region 
of ethidium bromide (EB)-induced demyelination in 
the spinal cord (21). The morphological basis of this 
recovery was evidenced by robust myelin basic protein 
(MBP) expression and extensive remyelination and 
these results may be due to participating directly in 
myelination of the endogenous remyelinating cells.

3.1.2. BDNF

BDNF was discovered in the early 1980's (22). An 
intensive interest in exploring BDNF's potential in 
treating SCI have been spurred because of its role as a 
promoter of cell survival and neurite outgrowth. BDNF 
can enhance plasticity and regenerative growth in tracts, 
such as the CST (23). It can specifically interact with 
the high affinity TrkB receptor inducing most of the 
desirable effects of BDNF in SCI. Furthermore, BDNF 
can also interact with the low-affinity pan-neurotrophin 
receptor p75, leading to signaling effects that often 
counteract TrkB activation (24).
 Although MSCs continuously produce BDNF and 
significantly rescue avulsed motoneurons (25), gene-
modified human BMSCs overexpressing BDNF can 
further increase the potential therapeutic effect of BDNF 
in SCI (26). At 5 weeks after transplantation of modified 

effect in a cellular SCI model of rat spinal cord neurons 
(17). Moreover, transduction of spinal motoneurons 
with adenoviral vector (Adv) carrying the NT-3 gene 
induced growth of axons from the intact corticospinal 
tract (CST) across the midline to the denervated side in 
animals with a CST lesion (18).
 Implantation of genetically modified MSCs with 
NT-3 can improve locomotor function, structure, and 
electrophysiological properties. Sprague–Dawley (SD) 
rats in a NT-3-human umbilical cord MSCs (HUMSCs) 
group had significantly improved locomotor function 
recovery and more than the control group in a rat 
model for clipped SCI (19). The NT-3-HUMSCs group 
achieved better functional recovery, more intensive 
5-HT fibers, a larger volume of spared myelination, 
and a smaller area of cystic cavity than the HUMSCs 
group at the end of 12 weeks after SCI. Bone marrow-
derived MSCs (BMSCs) overexpressing NT-3 also can 
promote locomotor function and structure recovery. 
After NT-3 modified BMSCs were implanted into the 
transected spinal cord of rats, the animals obtained 
some improvement (both functionally and structurally), 
including the recovery of hindlimb locomotor function, 
dramatically reduced cavity volume, clear axonal 
regeneration, and more neuronal survival (20). In 
contrast, simple MSC implantation was not a very 
effective therapy for spinal transection. Moreover, 
implantation of NT-3 gene-modified BMSCs resulted 

Table 1. Activities of Genetic modification of MSCs in SCI animal models

Transduced 
genes

NT-3

NT-3 

NT-3

BDNF

GDNF

MNTS1

TrkC

HGF

Animals

60 female
SD rats 

36 female
SD rats

 25 female
SD rats

66 female
SD rats 

18 female
SD rats

48 female
Fischer rats

80 female
SD rats

51 female
SD rats

 SCI models

Compression of at L1 
level

Complete transection 
at T10 level

1 μL EB (0.1 mg/mL) 
into the T10 thoracic 
cord

Transect ion a t  T9 
level

Contusion injury at 
T9 level

Moderate contusion 
at T8 level

Complete transection 
of the spinal cord at 
T10

Hemisection injury at 
C4 level

Modified
MSCs 

HUMSCs

Rat BMSCs

Rat BMSCs

Human
BMSCs

Rat BMSCs

Rat BMSCs

Rat BMSCs

Human
BMSCs

Time point
and dose

Seven days af ter 
injury, 1×106 per rat

Immediately, 5×105 
per rat

Three days after EB 
injection, 1×105 per 
rat

Immediately,  1.2 
×105 cells per rat

Seven days af ter 
surgery, 2×105 cells 
per rat

Seven days af ter 
injury, 4×105 cells 
per rat

Immediately, 5×105 
cells per rat

Immediately, 2.0×105 
cells per rat

Gene
carriers

Adenovirus 
vector

Adenovirus 
vector

Adenovirus 
vector

Adenovirus 
vector

Retrovirus 
vector

Lentivirus 
vector

Adenovirus 
vector

Lentivirus 
vector

Outcome

Significant improvement of locomotor 
function

Some improvement (both functionally 
and structurally)

Significant improvement of locomotor
function and restoration of electro-
physiological properties

Locomotor recovery improvement

Limited capacity for the replacement 
of neural cells lost

Axonal growth increase and cutaneous 
hypersensitivity prevention

Improvement in conduction of cortical 
MEPs and hindlimb locomotor function

Anti-glial scar, axonal growth increase 
and improvement in recovery of forepaw 
function

Ref.
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20

21

26

32

39

43

47
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BMSCs for SCI, locomotor recovery improvement was 
observed for the BDNF-BMSC group, but not in the 
BMSC group. Structurally there was increased sprouting 
of the injured corticospinal tract and an increased cell 
survival of corticospinal tract neurons in the primary 
motor cortex. 

3.1.3. Glial cell line -derived neurotrophic factor (GDNF)

GDNF exists in embryonic limb and muscle at high 
levels at the time of innervation and is necessary 
for normal neuromuscular development (27). It has 
been shown to protect motor neurons in a number of 
different animal models (28). GDNF can increase neural 
sprouting and prevent cell death (29). The heterodimer 
receptor system of GDNF includes GDNF receptor alpha 
(GFRα) and c-Ret expressed by healthy motor neurons. 
These neurons can bind, internalize, and transport 
GDNF in both antero- and retrograde directions in a 
receptor-dependent manner (30). GDNF administration 
may stimulate the survival of injured motor neurons and 
promote axonal regeneration (31). GDNF-transduced 
MSCs can survive and express the therapeutic gene 
after 6 weeks of transplantation to the site of SCI, while 
maintaining an undifferentiated phenotype. However, 
they provide excellent opportunities for local delivery of 
neurotrophic factors into the injured spinal cord (32).

3.1.4. Nerve growth factor (NGF)

NGF can promote survival and axonal growth of sensory 
and sympathetic neurons. The functions of NGF are 
mediated by its binding to TrkA and the p75 neurotrophin 
receptor (p75 NTR) (33). This NGF-receptor complex 
undergoes endocytosis and retrograde transport to the 
neuronal soma where it regulates gene expression (34).
 NGF expression significantly increased in the 
spinal cord injured tissue 3 days after MSC graft (35). 
Moreover, secreted NGF from genetically modified 
MSCs induced neurite outgrowth from PC12 cells 
(36). Combination of MSC transplantation with NGF 
promoted axonal regeneration and further functional 
improvement compared with single MSC transplantation 
or NGF on the repair of SCI in adult rats (37). 

3.1.5. MNTS1

MNTS1 contains only seven amino acid changes from 
multineurotrophin NT-3/D15A. It can bind all receptors 
of the Trk family and induce autophosphorylation of 
TrkA, TrkB, and TrkC (38). MSCs transduced with a 
multineurotrophin are effective in cell growth promotion 
and sensory function improvement after SCI. Kumagai 
et al. reported that transplantation with MSC-MNTS1 
and MSC-MNTS1/p75− enhanced axonal growth and 
significantly prevented cutaneous hypersensitivity after 
SCI (39). Furthermore, transplantation with MSC-

MNTS1/p75− increased angiogenesis and decreased 
glial scar formation. 

3.2. TrkC

The effects of mature neurotrophins on neuronal 
survival are mediated by members of the Trk family of 
receptor tyrosine kinases (40) and are modulated by the 
common neurotrophin receptor p75 NTR (also known 
as NGFR) (41). The Trk family of receptor tyrosine 
kinases which neurotrophins bind to includes TrkA 
(NGF), TrkB (BDNF and NT-4/5) and TrkC (NT-3). 
 Chen et al. showed that in vivo transplanted MSCs 
overexpressing TrkC migrated into the NT-3 enriched 
area. Moreover, the migrating incidence as well as 
migration distance of MSCs was significantly higher 
than the control (42). The results indicated that TrkC 
acts as a chemokine receptor with its high affinity 
for NT-3 and may play a role in MSC homing. TrkC 
gene-modified MSCs transplantation combined with 
electroacupuncture treatment not only increased MSC 
survival and differentiation into neuron-like cells but 
also promoted CST regeneration across injured sites to 
the caudal cord and functional improvement in SCI (43). 
In addition, the conduction of cortical motorevoked 
potentials (MEPs) and hindlimb locomotor function 
increased as compared to controls. These results are 
perhaps due to an increase of NT-3 levels, upregulation 
of laminin and GAP-43, and downregulation of GFAP 
and chondroitin sulphate proteoglycan (CSPG) proteins.

3.3. Hepatocyte growth factor (HGF)

HGF is primarily produced by cells of mesenchymal 
origin. It is a pleiotropic cytokine which promotes 
angiogenesis and cell survival (44). Injection of HGF 
has been demonstrated to enhance kidney and liver 
regeneration (45). In addition, systemic treatment 
with HGF significantly accelerated remyelination in 
lysolecithin-induced rat dorsal spinal cord lesions and 
in slice cultures (46). Moreover, HGF has anti-glial scar 
effects and could be used to ameliorate functional deficits 
following SCI. Transplantation of HGF overexpressing 
MSCs (HGF-MSCs) into hemisection spinal cord lesions 
at C4 markedly decreased TGFβ isoform and neurocan 
levels and reduced the extent of astrocytic activation and 
glycosaminoglycan chain deposition around hemisection 
lesions. Furthermore, animals treated with HGF-MSCs 
showed axonal growth promotion beyond glial scars and 
recovery improvement of forepaw function (47).

4. Gene carriers

Effective gene transduction is the basis of genetic 
modification of MSCs in SCI repair. Viral vectors are 
characterized by high transduction efficiency and stable 
transgene expression. Viral vectors mediating genetic 
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modification of MSCs include retroviral, adeno-
associated viral, adenoviral, and lentiviral vectors. They 
have their own advantages and disadvantages (48). 
Lentiviral vectors have the unique ability to integrate 
into the genome of non-dividing cells and enable their 
relatively long and stable transgene expression. On 
the contrary, other retroviral vectors only transduce 
dividing cells. Moreover, the immunogenicity of 
lentiviral vectors is significantly reduced (49,50). 
Adenoviral vectors are able to transduce dividing and 
non-dividing cells (51). They are relatively safe to the 
host due to no integration function. Meanwhile, adeno-
associated virus is also considered non-pathogenic to 
humans because it is a defective virus (52). 
 Non-viral vector systems have many advantages 
compared to viral vector systems, including, significantly 
lower  toxici ty/ immunogenici ty  and potent ia l 
tumorigenicity, unlimited transgene size (range is from 
oligonucleotides to artificial chromosomes), simple 
quality control, and simple requirements for drugs and 
management (53). Non-viral vectors may be applied to 
transduce exogenous genes into MSCs in SCI repair.

5. Conclusions

Continuous development of new strategies to treat SCI 
is urgently needed because, to date, there is no evident 
effective treatment for SCI. More information is needed 
regarding genetic modification of MSCs, including 
transgene expression level and stabilization, elaborate 
gene regulation, and safety. Further experimental and 
clinical investigations will allow a better understanding 
of mechanisms of action, therapeutic effects, and the 
safety profile. Many molecules have been recognized 
for their promising and potent activities of rescuing 
SCI. Besides the above-mentioned neurotrophic factors, 
TrkC, and HGF, other cytokines and anti-apoptosis 
molecules can also be used to modify MSCs, such as 
D15A (with NT-3 and BDNF activity) (54), ciliary 
neurotrophic factor (CNTF) (55), and survivin (56). In 
the future, more molecules acting as overexpressing 
genes in MSCs and treating SCI will be recognized.
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