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1. Introduction

Nerve growth factor (NGF) is a growth factor 
that belongs to the nerve growth factor family of 
neurotrophin. NGF, like the other neurotrophin family 
members such as brain derived neurotrophic factor 
(BDNF), neurotrophins-3 (NT-3), neurotrophins-4/5 
(NT-4/5), and neurotrophins-6 (NT-6), binds to two 
structurally different types of receptors: the p75 
neurotrophin receptor (p75NTR) and tropomyosin-
related kinase A (TrkA) (Figure 1) (1-3) and regulates 
neuronal survival, differentiation and growth. Currently, 
NGF, released from the nerve fibers, has been found 
to be involved in the tumor progression, leading to 
generate a positive microenvironment for cancer cell 
survival and proliferation (4-6).

2. The molecular structure and physiological function 
of NGF and its receptors

2.1. NGF

NGF was first discovered by Rita Levi-Montalcini in 
the early 1950's for its effects on the neuronal survival, 
proliferation, and differentiation (7-9). NGF is not only 

discovered in nervous system, but also detected and 
quantified in a variety of normal and neoplastic human 
tissues (10,11). 
 NGF was first isolated from the mouse submaxillary 
gland with the molecular weight of approximately 140 
KD, which is highly homologous to human NGF (12). 
Each NGF is composed of 2 α subunits, 1 β subunit, 2 γ 
subunits (α2βγ2) and also one or two zinc ions (13,14). 
The β subunit of NGF is a biologically active region 
and a non-covalently bound homodimer that can be 
separated into 2 identical chains of 118 amino acids. 
The 2 γ subunits of NGF have proteolytic activity and 
are members of the kallikrein family of trypsin-like 
proteases. The 2 α subunits are highly homologous to 
the γ subunit but without any enzymatic activity (15,16).
 Under physiological condition, NGF regulates 
neuronal survival, proliferation, and differentiation 
in the peripheral and central nervous systems by 
binding to its receptors: TrkA and p75NTR. Binding 
to p75NTR, NGF initiates recruitment of various 
adaptors, which activate c-Jun N-terminal kinase (JNK) 
signaling pathways to promote apoptosis, and activate 
NF-κB pathways to promote cell survival. By binding 
to TrkA, NGF initiates pro-survival PI3K/AKT and 
Ras/Raf signaling pathways, via Ras/MAPK pathway 
to promote cell proliferation and metastasis (Figure 2) 
(6,17-20).
 The intracellular activation of NGF receptor binding 
in figure 2 occurs only as receptor homodimers. 
Researchers have also suggested the existence of 
p75NTR and TrkA complexes which has been presented 
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from both cross-linking and immunoprecipitation 
(21). Previous research has shown that p75NTR 
and TrkA interact directly in surface membranes or 
their extracellular (EC) domains (22), but the latest 
research shows that TrkA and p75NTR associate 
physically through their intracellular (IC) domains 
(23). Regardless of how p75NTR and TrkA receptors 
associate, the coexpression of p75NTR and TrkA 
receptors results in the formation of high-affinity NGF 
binding sites. The reason is associated with p75NTR, 
which can contribute to increase the binding rate of 
NGF with TrkA and enhance TrkA activation and the 
number of high affinity binding sites (24). A recent 
report demonstrated that an endogenous intracellular 
domain fragment of p75NTR containing these 29 
amino acids was capable of interacting with TrkA 
resulting in the formation of high-affinity binding sites 
for NGF (25). The formation of high-affinity binding 
sites, resulting in enhanced NGF responsiveness, is also 
necessary for complete outgrowth and for long-term 

survival (26,27).
 For a long time, NGF is always considered to be 
the main form for its biological activity in regulating 
neuronal survival, proliferation, and differentiation. 
However, recent studies showed that proNGF, the 
precursor form of NGF, is really largely exist in central 
nervous system tissues, and has biological functions 
exceeding its role as a precursor (17,28,29). ProNGF 
could induce cell death by binding to p75NTR with 
high affinity (30-32). But it shows low affinity to TrkA, 
another receptor of NGF (33). Moreover, proNGF could 
induce apoptosis by binding to p75NTR and sortilin, a 
specific receptor of proNGF. Sortilin is a member of the 
mammalian type-I transmembrane receptors containing 
a Vps10p domain, which palys an essential role in 
proNGF-induced cell death and apoptosis (34,35). 
Blocking sortilin can prevent induction of apoptosis 
by proNGF (36). Further studies showed that sortilin 
acted as an assistant receptor and molecular switch 
for p75NTR-mediated apoptosis induced by proNGF 
(37). This indicated that proNGF induced apoptosis 
by forming a stable ternary proNGF/sortilin/p75NTR 
complex instead of proNGF/p75NTR complex (34,38).

2.2. NGF receptors

p75NTR is a low affinity NGF receptor and also a 
member of the tumor necrosis factor (TNF) receptor 
superfamily. It has no tyrosine kinase activity, nor is it 
linked to a G-protein-coupled pathway (39). p75NTR 
consists of an extracellular region, which contains four 
cysteine-rich domains, a single transmembrane domain 
and an intracellular death domain. Its intracellular 
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Figure 2. NGF signalling pathways. p75NTR and TrkA signalling pathways. "→" represents stimulatory modification.

Figure 1. Neurotrophins and their preferred receptors. 
Neurotrophins all bind to p75NTR. TrkA is the preferred 
receptor for NGF. The interaction of NT-3 with TrkA requires 
high concentrations of the neurotrophin.



www.biosciencetrends.com

BioScience Trends. 2014; 8(2):68-74. 70

drugs which can induce p75NTR expression were also 
observed to induce apoptosis in prostate cancer cells 
(54,55). 
 Enforced p75NTR expression has been shown to 
inhibit gastric cancer growth in vitro and in vivo (37) 
by slowing cell cycle progression that results in cell 
accumulation of G0/G1 in prostate tumor cells (56,57) 
and bladder tumor cells (58). Moreover, p75NTR over-
expression has been reported to induce mitochondria-
mediated apoptosis through activation of a caspase-9/-7 
cascade in human bladder tumor cells (59). 
 However, activation of the p75NTR by ligation with 
NGF leads to opposing effects in breast cancer. Binding 
of p75NTR with NGF has been shown to stimulate 
breast cancer cells survival signaling. The mechanism 
of this action is largely unknown but has been suggested 
to be mediated by activation of NF-κB signaling 
involving BEX2. Activation of the p75NTR receptor by 
NGF leads to diverse and sometimes opposing effects, 
in particular because of intracellular adaptor molecules 
and expression of co-receptors (60,61). 
 A study by Zhao et al. had shown that the gene 
silencing technique by siRNA targeting p75NTR was 
capable of inducing cancer cell apoptosis (62).

3.1.3. Involvement of NGF and its receptors in metastasis

Metastasis, the spread of cancer cells from the primary 
neoplasm to distant organs, is the most fearsome aspect 
of cancer (63). p75NTR has been shown to be a tumor 
suppressor of NGF-stimulated migration of human 
prostate tumor cells (64). Jin et al. showed that p75NTR 
expression inhibited the abilities of cell invasion and 
metastasis of gastric cancer cells via inhibiting the NF-
κB signaling transduction (65). Overexpression of NGF 
has been shown to alter the blood vessel structure, 
leading to a reduction in vascular permeability and 
retention of cancer cells in the vasculature in lung 
carcinoma cells (66).
 However, NGF has also been reported to promote 
prostate cancer cell metastasis, while intravenous 
gammaglobulin (IVIg), containing natural antibodies 
against NGF,  is able to inhibit the migration of 
prostate cancer cell lines (67). On the other hand, TrkA 
overexpression promotes migration and invasion in 
vitro and enhances metastasis of xenografted breast 
cancer cells in immunodeficient mice (68). Further 
investigations are needed to elucidate the underlying 
mechanisms of these actions.

3.1.4. Involvement of NGF and TrKA in cancer growth 

NGF/TrKA is involved in the regulating cell survival, 
differentiation, and proliferation, both in neuronal and 
non-neuronal cells (69). Recent studies demonstrated that 
TrkA expression was increased during the progression 
of medullary thyroid carcinoma and neuroblastoma (70). 

domain can be phosphorylated and bind to a number of 
death-signalling proteins (40,41). 
 TrkA is a high affinity NGF receptor with tyrosine 
kinase activity. Unlike p75NTR which can be activated 
by all neurotrophin family members, TrkA is activated 
only by particular neurotrophins (Figure 1) (40,42-44). 
Like most receptor tyrosine kinases, TrkA is activated 
by ligand-induced formation of non-covalently 
associated receptor dimers (43). TrkA primarily 
regulates growth and differentiation of neurons in both 
peripheral and central nervous systems. NGF/TrkA 
signaling pathway supports survival and differentiation 
of sympathetic as well as sensory neurons responsive to 
temperature and pain (45).

3. Involvement of NGF and its receptors in cancer

3.1. The possible role in tumorigenesis

3.1.1. NGF prevents tumor growth through regulating 
innervations of perivascular nerve

Tumors require sustenance in the form of nutrients 
and oxygen and as well as an ability to evacuate 
metabolic wastes and carbon dioxide. The tumor-
associated neovasculature, generated by the process of 
angiogenesis, addresses these needs (46). Growth of 
solid tumors is also dependent on their blood supply 
which is derived from  two sources: blood vessels 
recruited from the pre-existing host vascular network 
and those resulting from the angiogenic response to 
cancer cells (47).
 NGF facilitates innervations of perivascular nerve 
to regulate the blood flow in tumor neovessels and 
suppress tumor growth. Goda et al. demonstrated 
that NGF administration subcutaneously suppressed 
the growth of DU145 prostate tumors in nude mice 
by accelerating the maturation of neovasculatures in 
tumor tissues (48). Another recent study reported NGF 
treatment of mice implanted with DU145 prostate 
carcinoma cells induced innervation of perivascular 
nerves around tumor neovessels (49). NGF has also 
been shown to promote the development of new blood 
vessels (angiogenesis) through a direct interaction with 
α9β1 integrin (50). The mechanism involved in NGF 
effects on tumor growth needs further investigation.

3.1.2. Involvement of NGF and p75NTR in apoptosis

p75NTR expressed in cancer cells may act as a tumor 
suppressor when binding to NGF and negatively 
regulate cell growth and proliferation (51). Dimaras 
and Gallie have demonstrated that p75NTR suppressed 
the  progress ion  of  bo th  human and  TAg-RB 
murine retinoblastoma (52). Medulloblastoma cells 
overexpressing p75NTR displayed a significant increase 
in apoptosis (53). Non-steroidal anti-inflammatory 
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Moreover, cancer cellular growth showed an association 
with NGF/TrkA in neuroblastomas and pancreatic cancer 
(71,72) and blocking the NGF/TrkA signal pathway 
can inhibit obviously tumor growth in prostate cancer 
(73). Besides, both in vitro and in vivo studies showed 
that TrkA stimulation can result in cellular growth in 
the breast cancer (45,74). TrkA appearing anti-apoptotic 
activities has a direct relationship with the presence of 
Ku70, which is the DNA repair protein and reported for 
its role in cell survival and carcinogenesis (69). 

3.2. Involvement of NGF and TrkA in cancer pain  

Pain is one of the most feared and burdensome 
symptoms in cancer patients and most individuals 
experience moderate to severe pain (75-77). Bone 
cancer pain is a high-risk of malignancies in patients 
with breast, prostate and lung cancer as these tumors 
have a remarkable ability to metastasize to bone (78). 
 NGF and its cognate TrkA receptor are believed 
to be a major mediator of chronic pain (79). NGF has 
been shown to be involved in perineural invasion (PNI), 
a process where cancer cells invade the surrounding 
nerves in pain generation in several malignancies, 
including breast, prostate and pancreatic cancers (80). 
Inhibiting the action of NGF/TrkA has been proposed 
to be a possible therapeutic approach to reduce PNI and 
block bone cancer pain (81). 
 NGF can promote the pathological reorganization 
of nearby TrkA sensory nerve fibers. The therapies of 
preventing this reorganization of sensory nerve fibers 
may provide insight into the mechanisms driving 
cancer pain (82,83). In a mouse model of prostate 
cancer-induced bone pain, both preemptive and late 
administration of monoclonal antibodies against 
NGF significantly reduced nociceptive behaviors, 
sensory and sympathetic nerve sprouting, and neuroma 
formation (84). Other studies showed that early/
sustained, but not late/acute administration of a TrkA 
inhibitor ARRY-470 to mice markedly attenuated 
bone cancer pain and significantly blocked the ectopic 
sprouting of sensory nerve fibers and the formation of 
neuroma-like structures in the tumor bearing bone (85).  
 Both of these strategies carry its strength as well as 
limitations. For example, administration of monoclonal 
antibodies (anti-NGF or anti-TrkA) are generally 
selective than small inhibitors but carrying the risk of 
immune reactions. While small molecule inhibitors 
of TrkA, which are generally less expensive than 
monoclonal antibodies, allowing greater flexibility in 
dosing but generally less selective (85).

4. Discussion

NGF and its receptors are involved, directly or 
indirectly, in the pathogenesis of cancer and the 
manifesto of cancer pain through several mechanisms 

(Figure 3) such as inhibiting tumor growth, increasing 
apoptosis and promoting neuronal regulation of tumor 
blood flow. Future investigations will be provided for 
further insight into the actions of NGF and its receptors 
in cancer development and metastasis. Targeting the 
actions of NGF and its receptors may represent a 
potential direction for the treatment of tumorigenesis 
and cancer pain in future.
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