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1. Introduction

Data deluge in the life sciences The life sciences field 
is entering an era of big data with the breakthroughs 
of science and technology. Moore's law shows that 
computers double in speed and halve in size every 18 
months (1). A similar trend is observed for hard disks (2) 
and networks (3). The exponential growth of scientific 
instruments has resulted in an exponentially growing 
amount of scientific data (4). Until recent years, Moore's 
law kept outpacing the generation of biological sequence 
data by its growth in storage and processing capacity. 
This trend has remained true for approximately 40 years 
and was not broken until the completion of the Human 
Genome Project in 2003. From 2005, the sequencing 
output doubling rate decreased to 5 months because 
of the development of Next-Generation Sequencing 
technologies (NGS) (5). Since 2008, genomics data are 

outpacing Moore's Law by a factor of 4 (6). The 1,000 
Genomes Project (7), which involves sequencing and 
cataloging human genetic variations, has deposited 2 
times more raw data into GenBank (http://www.ncbi.nlm.
nih.gov/genbank/) at National Center for Biotechnology 
Information (NCBI) during its first 6 months than all 
the previous sequences deposited in the last 30 years 
(5). In the last five years, more scientific data have been 
generated than in the entire history of mankind (8). 
Figure 1 illustrates the GenBank and Whole Genome 
Shotgun (WGS) statistics up to February 2014. Human 
DNA comprises approximately 3 billion base pairs with 
a personal genome representing approximately 100 
gigabyte (GB) of data (6). Two nanopore sequencing 
platforms (GridIONTM and MinIONTM) (9), reported 
in February 2012, are capable of delivering ultra-long 
sequencing reads (~100 kb) with additionally higher 
throughput and much lower cost. Sequencing a human 
genome has decreased in cost from $10,000 in 2007 to 
$1,000 in 2012 (10) and is likely to drop below $100 per 
genome in the next decade (11). In the third decade of the 
21st century, it has been estimated that 1 billion people 
will be sequenced and that approximately 3,000 petabyte 
(PB) (1 PB is approximately equivalent to 106 GB) of 
storage will be needed. Grossman et al. predicated that 
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we would be in an era of ubiquitous sequencing within a 
few years, in which genome sequencing would become 
routine for both research and clinical applications (11).
 Many other kinds of life science big data are being 
produced at high speed as well as genomics data. 
Functional magnetic resonance imaging or functional 
MRI (fMRI) is a functional neuroimaging procedure 
using MRI technology that measures brain activity 
by detecting associated changes in blood flow. This 
technique generates complex data sets: ~100,000 
locations, measured simultaneously hundreds of times, 
resulting in billions of pairwise relations, collected in 
multiple experimental conditions, and from dozens 
of participants per study (12). Other data, including 
Computerized Tomography (CT) Scan data, epidemic 
data, Electronic Health Records (EHR) system data, 
patient behavior and sentiment data etc., are also being 
generated and gathered at a fast pace.
 Big data-related projects and activities More and 
more big data-related projects and activities are being 
performed in the world. The Genome 10K project (http://
www.genome10k.org) aims to assemble a genomic 
zoo, which will be a collection of DNA sequences 
representing the genomes of 10,000 vertebrate species, 
approximately one for every vertebrate genus. The 
1001 Genomes Project (http://www.1001genomes.
org), launched at the beginning of 2008, has the goal of 
discovering the whole-genome sequence variation in 
1,001 strains of the reference plant Arabidopsis thaliana. 
The 1K Insect Transcriptome Evolution (1KITE) Project 
(http://www.1kite.org) aims to study the transcriptomes 
of more than 1,000 insect species encompassing all 
recognized insect orders. The ENCyclopedia of DNA 
Elements (ENCODE) project (http://www.genome.
gov/10005107) aims to identify all functional elements 
in the human genome sequence. ENCODE generated 
more than 15 terabyte (TB) of raw data, and the data 
analysis consumed the equivalent of more than 300 years 
of computing time. The Cancer Genome Atlas (TCGA) 
(http://cancergenome.nih.gov/) began as a three-year 
pilot in 2006 with an investment of $50 million each 
from the National Cancer Institute (NCI) and National 
Human Genome Research Institute (NHGRI), confirming 

that an atlas of changes could be created for specific 
cancer types. The European life-science infrastructure 
for biological information (ELIXIR) (http://www.
elixir-europe.org/) unites Europe's leading life science 
organizations in managing and safeguarding the massive 
amounts of data being generated every day by publicly 
funded research. ELIXIR aims to provide the facilities 
necessary for life science researchers, from bench 
biologists to cheminformaticians, to make the most of 
the rapidly growing store of information about living 
systems. Tohoku University Tohoku Medical Megabank 
Organization (http://www.megabank.tohoku.ac.jp/
english/) was founded to establish an advanced medical 
system to foster the reconstruction from the Great East 
Japan Earthquake. The organization will develop a 
biobank that combines medical and genome information 
during the process of rebuilding the community medical 
system and supporting health and welfare in the Tohoku 
area. Approximately 60 PB of data representing 1.5 
million genomic and medical pieces of information is 
predicted to be acquired. In China, Beijing Genomics 
Institute (BGI) and their publishing partner BioMed 
Central, a leader in scientific data sharing, announced the 
launch of a new journal, GigaScience, which publishes 
large-scale biological research in a unique format (http://
www.genomics.cn/en/news/show_news?nid=99134). 
 Big data issues Life sciences data are continuing to 
grow in not only size but also variety and complexity 
with great speed. The role of genome sequencing in the 
life sciences is the tip of the iceberg. To investigate the 
complex systematic effects of drugs and other chemical 
compounds on biological systems and to validate a 
hypothesis in drug discovery, we require the data on 
diseases, compounds, genes, targets, side effects, and 
metabolic pathways, as well as from the clinic and other 
sources (13). These data reside in a number of different 
data sources, such as GenBank (14), Genome Sequence 
DataBase (GSDB) (15), SWISS-PROT (16), European 
Molecular Biology Laboratory (EMBL), Online 
Mendelian Inheritance in Man (OMIM) (17), and many 
others (18). Data sources can store different data types 
in different formats (19); for example, flat file (e.g., tab-
delimited file), sequence file (e.g., FASTA), structure file 
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Figure 1. Growth of GenBank and WGS. NCBI GenBank ([Internet] [cited July 18, 2014]. Available from http://www.ncbi.
nlm.nih.gov/genbank/statistics).
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the subject and object and is also represented by a URI. 
For example, in the KEGG database the breast cancer 
gene hsa:675 encodes the Homo sapiens protein with 
the number 119395734 in NCBI Protein database. 
This gene is the same as gene ENSG00000139618 in 
Ensemble database. This could be expressed as two 
triples: "<hsa:675> <encodes> <protein:119395734>. 
<hsa:675> <owl:sameAs> <ENSG00000139618>". 
The relationship among these three resources: hsa:675, 
protein:119395734, and ENSG00000139618, in three 
databases is established. Similar to how any document 
expressed in HyperText Markup Language (HTML) can 
be linked to any other document expressed in HTML, 
the information expressed in RDF can be connected to 
any other information expressed in RDF (26). However, 
with respect to HTML, a linked resource must be a 
whole document, whereas with RDF, any information 
defined as a resource can be linked together. 
 RDF is expressive with the simple triple format. 
The Semantic Web integrates not only resources that 
are themselves built or represented using RDF but also 
those resources that can be mapped to RDF (29).

2.2. SPARQL Protocol and RDF Query Language 
(SPARQL)

SPARQL is an RDF query language (30). A SPARQL 
endpoint is a conformant SPARQL protocol service 
as defined in the SPROT (SPARQL Protocol for 
RDF) specification. A SPARQL endpoint enables 
users (human or other) to query a knowledge base via 
the SPARQL language. SPARQL 1.1 specification, 
produced by the SPARQL Working Group on 21 March 
2013, defines the syntax and semantics of the SERVICE 
extension, which allows a query author to direct a 
portion of a query to a particular SPARQL endpoint. 
The results are returned to the federated query processor 
and are combined with results from the rest of the query 
(31). The growing number of SPARQL query services 
offer data consumers an opportunity to merge data 
distributed across the Web. However, SPARQL query 
is still in its infancy, and its service provider tends 
to change its endpoint in the development stage. The 
site (32) monitors the availability of some SPARQL 
endpoints. Table 1 summarizes the main current 
available SPARQL endpoints in the life sciences.

2.3. Ontology

Semantic heterogeneities arise at the entry level where 
different terms are used for the same things or the same 
terms are used for different things. Ontology describes 
the types of entities in the world and how they are 
related. The RDF model enables a link between two 
resources. Ontology strengthens and implements 
the link by specifying the semantics of terminology 
systems in a well-defined and unambiguous manner (33, 

(e.g., Protein Structure File (PSF)), Extensible Markup 
Language (XML) file (e.g., KGML- Kyoto Encyclopedia 
of Genes and Genomes (KEGG) Markup Language for 
describing graph objects), and database management 
systems (DBMSs). Even for the same data type, data 
formats in different sources are often incompatible. In 
addition, new data formats are being invented along 
with the development of new technologies (20), such 
as Sequence Alignment/MAP (SAM) (21) and Genome 
Variation Format (GVF ) (22). 
 To ensure that big data has a major influence in the 
life sciences, comprehensive data analysis across multiple 
data sources and even across disciplines is indispensable. 
For example, research on the neurodegenerative disease 
Alzheimer's disease (AD) spans the disciplines of 
psychiatry, neurology, microscopic anatomy, neuronal 
physiology, biochemistry, genetics, molecular biology, 
and bioinformatics (23). A series of combination and 
integration problems such as data, terminologies, 
knowledge, and service integration must be solved first 
(24). Eliminating the inconsistency of data and terms as 
well as finding and meaningfully combining information 
in the vast majority of data all require knowing the exact 
semantics of the data (25). 
 The increasing volume of data generated by 
new technologies at an unprecedented rate and the 
heterogeneous complex varieties of data are two principal 
issues mainly discussed in life science informatics 
(26). In the remainder of this paper, we provide insight 
into how the Semantic Web technologies address the 
heterogeneous variety of life sciences big data. We also 
present a survey of the state-of-the-art development of 
every technology and some related projects. Finally, we 
summarize the challenges and problems that we have to 
face now and in the future. 

2. Semantic Web technologies

The ever-evolving next-generation Web, characterized 
as the Semantic Web (27), is an extension of the current 
Web, aiming to provide information for not only 
humans but also computers to semantically process 
data. Berners-Lee et al. (27) believed that this form of 
Web content that was meaningful to computers would 
unleash a revolution of new possibilities. The following 
introduces a series of the Semantic Web technologies.

2.1. Resource Description Framework (RDF)

The RDF (28) is a model for representing information 
about resources on the World Wide Web. The RDF 
model identifies items with Web identifiers (called 
Uniform Resource Identifiers, or URIs) and encodes 
data in the form of subject, predicate, and object (with 
the whole usually referred to as a "triple"). The subject 
is a URI or blank node. The object is a URI or string 
literal. The predicate specifies the relationship between 
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34). Ontology provides a shared understanding of data, 
services and processes and has thus far played a role in 
the semantic integration of databases (35).
 The OWL Web Ontology Language (OWL) (36) is 
designed for use by applications that need to process 
the content of information instead of just presenting 
information to humans. By providing additional 
vocabulary along with formal semantics, OWL facilitates 
a greater machine interpretability of Web content than 
that supported by XML and RDF. Consider the following 
simple example (37): (i) frog and Amphibian are two 
classes, and both have an is-a property; (ii) there is a 
restriction in which Frog is a subclass of Amphibian; 
and (iii) Herry is one example of a Frog class. We can 
simplify the model as "<Frog> <rdfs:subClassOf> 
<Amphibian>" and "<Herry> <is-a> <Frog>", and then 
we can infer that "<Herry> <is-a> <Amphibian>". By 
including descriptions of classes, properties and their 
examples, the OWL formal semantics specifies how to 
derive its logical consequences, i.e., facts not literally 
present in the ontology but entailed by the semantics. 
These entailments may be based on a single document or 
multiple distributed documents that have been combined 
using defined OWL mechanisms (http://www.w3.org/
TR/owl-guide/). In this way, RDF enables the data 
publisher to explicitly state the nature of the connection 
(38). In contrast, HTML links typically only indicate 
that two documents are related in some way without 
showing the nature of the relationship. Together with 
RDF Schema (39), which provides a data-modeling 
vocabulary for RDF data, OWL offers a standard, 
machine-processable means of describing relationships 
between RDF statements, e.g., that one property is an 
rdfs:subPropertyOf of another. 
 The life sciences are flourishing with ontologies 
to enable the data in distributed sources to be shared 
and analyzed. The Open Biological and Biomedical 

Ontologies (OBO) Foundry (http://www.obofoundry.
org/) is a collaborative experiment involving developers 
of science-based ontologies who are establishing a 
set of principles for ontology development, with the 
goal of creating a suite of orthogonal interoperable 
reference ontologies in the biomedical domain. The 
ontologies developed by them include biological process, 
cellular component, chemical entities of biological 
interest, molecular function ontology and so on. The 
Ontology Working Group of the Health Care and Life 
Sciences (HCLS) is to facilitate creation, evaluation 
and maintenance of "core vocabularies and ontologies 
to support cross-community data integration and 
collaborative efforts". The Gene Ontology (GO) project 
(http://www.geneontology.org/) is a collaborative effort 
of Gene Ontology Consortium, to address the need for 
consistent descriptions of gene products in different 
databases. The Micro Array Gene Expression Data 
(MGED) Ontology (40) describes Microarray data and 
experiments. Biological Pathway Exchange (BioPAX) 
is an ontology for biological pathway data. National 
Center for Biomedical Ontology's (NCBO) BioPortal 
(https://bioportal.bioontology.org/) contains URIs for 
concepts from almost 300 biomedical ontologies and 
reference terminologies. BioPortal is a convenient tool 
that can be used to identify public ontologies that best 
map to the entities in biomedical and clinical data sets. 
Ontobee (http://www.ontobee.org/) aims to facilitate 
ontology data sharing, visualization, query, integration, 
and analysis. Several web services have been developed 
to efficiently use the existing ontologies. The Ontology 
Lookup Service (OLS, http://www.ebi.ac.uk/ontology-
lookup/) provides a web service interface to query 
multiple ontologies from a single location with a unified 
output format. To support ontology production based 
on existing resources, the OntoFinder/OntoFactory 
system (http://ontofinder.dbcls.jp/) aims to provide 

Table 1. List of some available biomedical SPARQL endpoints

•   Allie: http://allie.dbcls.jp/
•   Bio2RDF: 
    • HGNC: http://hgnc.bio2rdf.org/sparql
    • GO: http://go.bio2rdf.org/sparql
    • PharmGKB: http://cu.pharmgkb.bio2rdf.org/sparql
    • Pubmed: http://pubmed.bio2rdf.org/sparql
•   BioGateway: http://www.semantic-systems-biology.org/biogateway/querying
•   Cell Cycle Ontology: http://www.semantic-systems-biology.org/cco/queryingcco/sparql
•   HDP: http://healthdata.tw.rpi.edu/sparql
•   Linked Food: http://www.linkedfood.org:8890/sparql/
•   Linked Life Data: http://linkedlifedata.com/sparql
•   myExperiment: http://rdf.myexperiment.org/sparql 
•   NCBO: http://sparql.bioontology.org/
•   Neuroscience Information Framework: http://rdf-stage.neuinfo.org/
•   The EBI RDF platform: 
    • BioModels :http://www.ebi.ac.uk/rdf/services/biomodels/sparql
    • BioSamples: http://www.ebi.ac.uk/rdf/services/biosamples/sparql
    • ChEMBL: http://www.ebi.ac.uk/rdf/services/chembl/sparql
    • Expression Atlas: http://www.ebi.ac.uk/rdf/services/atlas/sparql
    • Reactome: http://www.ebi.ac.uk/rdf/services/reactome/sparql
    • UniProt: http://beta.sparql.uniprot.org/
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non-computer experts with an easy interface to assist 
ontology selection and term selection from BioPortal, 
until a user produces his/her seed ontology. Ontologies 
have been widely applied and play an important role 
in the life science field. Gene Set Enrichment Analysis 
(GSEA) (41) utilizes GO to determine whether an a 
priori defined set of genes shows significant, concordant 
differences between two biological states. Great efforts 
have been paid on how to design a good ontology system 
and use it in data integration and automated reasoning. 
The pathway data sharing in the BioPAX community 
standard (42) and cross-product extensions of the Gene 
Ontology (43) use ontology to verify the consistency of 
a data model. Multiple ontologies have been integrated 
(44). Formal approaches to ontology research and their 
potential impact on biomedical applications and analyses 
have been summarized (45).

2.4. Linked data

Similar to how the idea to add, search, and automatically 
discover documents in the world stimulated the Web's 
explosive growth, the same principles of linking, and 
therefore ease of discovery, can be applied to data on 
the Web (38). Different from a key word search, linked 
data make automated reasoning about data possible by 
using semantic technologies. We are moving from the 
era of "data on the web" to an era of "web of data (linked 
data)" (46). Linked data try to create the Web into a giant 
global database. The term Linked Data refers to a set of 
best practices for publishing and interlinking structured 
data on the Web. Tim Berners-Lee in his Design Issues 

introduced four Linked Data principles (47): (i) Use 
URIs as names for things. (ii) Use HTTP URIs to allow 
people to look up those names. (iii) When an individual 
looks up a URI, provide useful information using 
recommended standards (e.g., RDF and SPARQL). (iv) 
Include links to other URIs so that more things can be 
discovered. 
 Hypertext Transfer Protocol (HTTP) URIs provide a 
simple way to create globally unique names and a means 
to access information describing the identified entity. 
The RDF model enables the establishment of RDF links 
between data. A SPARQL query facilitates the retrieval 
of the data of interest across the distributed sources.
 Linked Data has gained significant uptake in the 
life sciences. The HCLS group works on the Linking 
Open Drug Data (LODD) project (http://www.w3.org/
wiki/HCLSIG/LODD), which provides linked RDF 
data exported from several data sources such as 
ClinicialTrials.gov, DrugBank (http://www.drugbank.
ca/), and DailyMed (http://dailymed.nlm.nih.gov/
dailymed/about.cfm). In particular, the Bio2RDF project 
has interlinked more than 30 widely used data sets (48), 
including the Universal Protein Resource (UniProt), 
KEGG, the Chemical Abstracts Service (CAS), PubMed, 
and Gene Ontology. Linking Open Data (http://www.
w3.org/wiki/SweoIG/TaskForces/CommunityProjects/
LinkingOpenData), a W3C Semantic Web Education and 
Outreach (SWEO) community project, aims to publish 
existing open license datasets as Linked Data on the 
Web to interlink things between different data sources. 
In Figure 2 the pink corner shows the life science data of 
the Linking Open Data (LOD) Project Cloud Diagram. 

Figure 2. The lower right corner of the Linking Open Data cloud diagram ([Internet] [cited July 18, 2014], Linking 
Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. Available from http://lod-cloud.net/). The pink part 
illustrates the life sciences data.
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Life science has 40 datasets with more than 3 billion 
triples, accounting for 9.60% of all data.

2.5. Triple store

Life and health science communities have made 
remarkable progress as early adopters of Semantic Web 
technologies. A triple store is a database for the storage 
and retrieval of triples. The UniProt knowledge base 
(49) connects more than 150 molecular biology and 
chemoinformatics databases and integrates, interprets, 
and standardizes data from numerous resources to achieve 
the most comprehensive catalog of protein sequences and 
functional annotations. As another example, the Protein 
Data Bank Japan (PDBj) (50) accepts and processes 
PDB entries that are deposited mainly from Asian and 
Oceanic researchers and maintains a centralized archive 
of macromolecular structures in collaboration with other 
Worldwide Protein Data Bank (wwPDB) members, 
including the Research Collaboratory for Structural 
Bioinformatics (RCSB) PDB (51), the Biological 
Magnetic Resonance Bank (BMRB) (52) in the US, 
and the Protein Data Bank Europe (PDBe) (53) in 
Europe. DNA Data Bank of Japan (DDBJ) (54) contains 
approximately 8 billion triples, a number that will likely 
increase. Whether RDF stores can meet the needs of a 
biological database provider, such as loading, querying, 
and scaling the data efficiently, will be a major concern. 
 The triple store benchmark is a benchmark for 
evaluating the performance of storage systems, such 
as load cost, query performance and scalability. The 
Benchmark can be classified into a synthetic data 
benchmark and a real data benchmark. The Lehigh 
University Benchmark (LUBM) (55) and the Berlin 
SPARQL Benchmark (BSBM) (56) are two often-used 
general benchmarks, and they use a data generator to 
produce synthetic e-commerce knowledge data. Cell 
Cycle Ontology (57) and BioBenchmark Toyama 2012 
(58) uses real biological data. BioBenchmark Toyama 
evaluated five triple stores, 4store (59), Bigdata (60), 
Mulgara (61), Virtuoso (62), and OWLIM-SE (63), 
with five biological data sets, Cell Cycle Ontology, 
Abbreviation/Long Form Search in Life Sciences 
(Allie), PDBj, UniProt, and DDBJ, ranging in size 

from approximately 10 million to 8 billion triples. 
Table 2 lists some popular triple stores according to 
their implemented language, inference ability and the 
presence of support for running in clusters. 4store 
was used in cell cycle ontology. Mulgara was used 
as an internal triple store in DDBJ. OWLIM-SE has 
been applied as a UniProt triple store. Virtuoso shows 
good performance in BSBM and DBpedia SPARQL 
Benchmark. Bigdata is a complete free open source 
triple that performs averagely well in BSBM, supports 
most inference functions and runs in both single node 
and cluster modes and could be a potentially good 
candidate to customize one's own triple store.

2.6. Triple store in the cloud

To address such large-scale data management and 
analysis, Semantic Web services necessitate the adoption 
of advances in high performance computing (64), such 
as cloud computing (65,66). Cloud computing has been 
proposed as a promising technology to solve both the 
economic and efficiency problems caused by the data 
explosion. Users do not need to purchase and install 
their own local expensive servers, and cloud computing 
vendors prepare all the computing resources and 
infrastructures as on-demand services. Users need only 
to pay the rental fee for the resources they have used in 
the cloud, which saves much money as the users pay by 
use instead of provisioning for peak (high-end sources 
purchased only for dealing with tough but few tasks). 
The most important benefit is that cloud computing 
greatly facilitates the sharing of analysis pipelines and 
data between researchers. According to the level of 
resources to be shared, cloud computing can be divided 
into four categories (67): Data as a Service (DaaS), 
Software as a Service (SaaS), Platform as a Service 
(PaaS), and Infrastructure as a Service (IaaS). DaaS 
provides on-demand access to up-to-date public data 
that can be accessed and used through the Internet. SaaS 
provides online software services in publicly accessible 
servers. PaaS provides a platform that enables users to 
develop, test and deploy their applications in the cloud. 
IaaS provides virtualized resources, including hardware 
and software, through the Internet. Cloud computing 

Table 2. Popular triple stores

Name 

4store
Bigdata
Mulgara
OWLIM
Virtuoso
AllegroGraph
Apache Jena
RDF-3X
Sesame

Language

C
Java
Java
Java
C
Common Lisp
Java
C++
Java

Cluster

Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes

Inference

No
RDFS and limited OWL inference
RDFS and limited OWL 
RDFS, OWL 2 RL and OWL 2 QL
limited RDFS and OWL
RDFS and limited OWL 
RDFS, OWL
No
RDFS 

Available at

http://www.4store.org/
http://www.bigdata.com/
http://www.mulgara.org/
http://www.ontotext.com/owlim
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
http://franz.com/agraph/allegrograph/
http://jena.apache.org/
https://www.mpi-inf.mpg.de/~neumann/rdf3x/
http://www.openrdf.org/
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provides big data in the life sciences field with good 
storage space, web services and development platforms.
 The ability to address big data studies on cloud-
based triple stores is drawing more attention. 
Apache Cassandra (68) is a cloud database with 
linear scalability. CumulusRDF (69) is an RDF store 
on a cloud-based architecture, licensed under the 
GNU Affero General Public License. The current 
version uses Apache Cassandra as a storage backend. 
CumulusRDF supports a SPARQL1.1 endpoint and 
allows for fast queries of 1 billion triples on 16 nodes 
(70). Apache HBase is an open source, horizontally 
scalable, row consistent, low latency, random access 
data store. HBase has a proven track-record for 
scaling out to clusters containing approximately 1,000 
nodes. It has been implemented as two versions: Jena-
HBase (71), using Jena as the SPARQL query engine, 
and Hive+HBase, a SQL-like data warehousing tool 
that allows for querying using MapReduce (72). 
MapReduce is a programming model and an associated 
implementation for processing and generating large data 
sets. MapReduce is highly fault tolerant and scalable 
and can run on clusters with thousands of machines, 
facilitating its wide use as a cloud programming 
framework in bioinformatics (67). The projects (72-76) 
focused on developing large-scale RDF stores using 
the MapReduce paradigm. Fensel et al. (77) focused 
on web-scale data analysis and reasoning. Stratustore 
(78) is an RDF store that uses Amazon's SimpleDB 
as an RDF store back-end in combination with Jena's 
API. It is an open source project. The results show that 
its performance is not competitive with other RDF 
stores such as Virtuoso when using 20 simultaneous 
Stratustore instances. The throughput of the system also 
increases as the number of Stratustore instances grows. 
Bugiotti et al. used SimpleDB to store RDF files in the 
Amazon Simple Storage Service (S3) and used Amazon 
SimpleDB to store the index (79). Dydra (80) relied on 
the Amazon EC2 infrastructure, providing a SPARQL 
endpoint to query the data stored. SHARD (81), a 
Berkeley Software Distribution (BSD) licensed open 
source project, is a proof-of-concept high-performance, 
low-cost distributed computing technology to develop a 
highly scalable triple-store built on Hadoop and Hadoop 
Distributed File System (HDFS). Accumulo (82) is 
an open-source, distributed, column-oriented store 
model. Rya (83) uses Accumulo as a storage backend. 
The evaluation (83) showed that, in most cases, Rya 
outperforms existing distributed RDF solutions.

3. Challenge

Semantic Web technologies were not born for big data. 
As the basis for Semantic Web technologies, RDF was 
originally designed as a metadata data model in 1997, 
providing interoperability between applications that 
exchange machine-understandable information on the 

Web. Six joint documents (Primer, Concepts, Syntax, 
Semantics, Vocabulary, and Test Cases) superseded the 
W3C RDF Recommendation and described updates 
to the syntax and a more detailed model in 2004. In 
2014 RDF Schema 1.1, as well as more representation 
formats such as JSON-LD, was introduced. The 
introduction of vocabulary, semantics, formal syntax, 
and rich representation formats made RDF evolve 
into a general-purpose language for representing 
information on the Web. The introduction of vocabulary 
and semantics (such as RDF Schema (RDFS), OWL, 
etc.) laid a foundation for dealing with the variety 
problem of big data in life sciences. Take wwPDB as an 
example.
 wwPDB is a collection of the experimentally 
determined 3D structures of biopolymers and their 
complexes. Metadata such as Functional Keywords, 
Biological source and Total molecular weight of an 
entry are encoded into RDF data directly, while the 
corresponding detailed structure information of the 
entry is encoded into URI links as a resource. Therefore 
the detailed information, such as atom model, can 
be retrieved from the linked file, "<PDBo:link_to_
pdbml_extatom rdf:resource="ftp://ftp.wwpdb.org/
pub/pdb/data/structures/all/XML-extatom/1gof-
extatom.xml.gz"/>" for the entry 1GOF in the PDBj 
database. Compared with relational database systems, 
RDF is more flexible for defining metadata with 
the current vocabulary. In the following statements, 
owl:DatatypeProperty defines a data type property 
instance metadata "datablockName". rdfs:domain 
indicates that the subjects of such property must belong 
to a "datablock" class, and the property itself should be 
a "string" Class.

<owl:DatatypeProperty xmlns:xsd="http://www.w3.org/2001/
XMLSchema" rdf:ID="datablockName">
<rdfs:domain rdf:resource="#datablock"/>
<rdfs:range rdf : resource="ht tp: / /www.w3.org/2001/
XMLSchema#string"/>

</owl:DatatypeProperty>
 According to the priority or importance of the data, 
one can choose to encode the information into the RDF 
model to do further analysis or act as search tags, or 
only include the detailed information into a linked file. 
By temporarily omitting the data file and concentrating 
on the metadata, the search or analysis can be reduced 
to a more effective space. Likewise Semantic web 
technologies can effectively manage the metadata 
of various kinds of data, such as videos and images, 
thus providing a good solution for the famous variety 
problem of big data.
 On the other hand, the other two Vs, velocity and 
volume, are still posing a big challenge for Semantic 
Web technologies. SPARQL 1.1, proposed in 2013, 
facilitates the distributed RDF data query, and is 
promising for enabling a global big database. However, 
some kinds of practical problems are hindering the 
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query efficiency, such as some SPARQL endpoints 
do not support SPARQL 1.1 yet; no Vocabulary 
of Interlinked Datasets (VoID) for Semantic Web 
Integrator and Query Engine (SemWIQ) (84), Web of 
Data Query Analyzer (WoDQA) (85), and SPARQL 
Endpoint Federation Exploiting VOID Descriptions 
(Splendid) framework (86); no service description 
for DARQ system (87) and so on. Specifications and 
guidance about what artifacts a SPARQL endpoint is 
obliged to offer are needed to make a federated query 
responsive. A lot of effort has also been put into the 
research of triple store. Wu et al. in the BioBenchmark 
(58) show that a single Virtuoso 6.4 and OWLIM-
SE 5.1 node can deal with 8 billion triples well. 
BSBM V3.1 also proves that Virtuoso 7 can handle 
150 billion triples with 8 machines. At the same time 
distributed RDF systems based on Hadoop and other 
cloud platforms, as mentioned in Section 2.6, are also 
being developed rapidly. It still needs a great effort to 
effectively manage petabyte and even bigger data. 
 Data integration is a typical application of Semantic 
Web technologies in life sciences. TogoTable uses 
database identifiers (IDs) in the table as a query key 
for searching. Because TogoTable (88) uses RDF, it 
can integrate annotations from not only the reference 
database to which the IDs originally belong, but also 
externally linked databases via the LOD network. 
TogoGenome (http://togogenome.org/) is a Semantic 
Web-based genome database collection. Neurocommons 
project (89) uses Semantic Web technology for 
assembling and querying biomedical knowledge from 
multiple sources and disciplines.
 However, the concept of big data, especially 
big data in the life sciences, is still in its infancy. 
Personal data, such as a personal genome, personalized 
medicine, and clinical data (e.g., electronic health 
records), are mostly still in an embryonic stage and 
located in the local data warehouses of their specific 
organizations. Effective-enough data processing 
platforms are needed to provide enough incentives 
for biological organizations to publish and share their 
data. More importantly, the platform or systems must 
ensure data security in a collaborative environment 
and not risk medical privacy (24). S3QL provides a 
permission control mechanism that allows the users 
to protect their data by specifying contextual minutia 
(90). Cloud security solutions include the use of better 
security systems with advanced encryption algorithms 
and proper signing of Service level agreements (91). 
Private and hybrid clouds are being built to ensure data 
safety (92). Similar problems exist in the LOD project. 
In addition, maintaining semantics links in a dynamic 
big data era is another difficult problem for LOD.
 Big data in the life sciences requires a high level of 
knowledge of both biology and computer science. Big 
data technologies, such as cloud-based applications, 
are based on parallel processing. Until now, few 

bioinformatics tools have been designed to run in 
parallel (6), a process that requires a high level of 
computational know-how. By contrast, ontology design, 
data analysis, hypothesis building and validation, 
and many other problems need specialized biological 
knowledge. 
 Despite these difficulties the flexibility on metadata, 
the development of distributed and cloud-based triple 
store systems, and the improvement of federated query 
systems facilitate Semantic Web technologies as a 
promising solution for the big data in life sciences, with 
great efforts and collaboration from the computer and 
biological community.

4. Conclusions

Big data poses a great challenge for the life sciences. To 
address the heterogeneous variety of life scientific big 
data, a series of Semantic Web technologies provides 
a promising solution. RDF, SPARQL, triple store 
and ontology facilitate the integration and analysis of 
heterogeneous multi-disciplinary data. Linked data turns 
the Web into a giant global database. Triple store in the 
cloud takes full advantage of cloud services to address 
the exponential growth of biological data. Although still 
in its infancy, the whole scientific community is making 
efforts to develop new technologies and tools to ensure 
that big data is accessible, analyzable and applicable to 
the field of life sciences.
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