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1. Introduction

Traumatic brain injury (TBI), also known as intracranial 
injury, occurs when an external force damages the 
brain. TBI can be classified by severity (mild, moderate, 
or severe), mechanism (closed or penetrating head 
injury), or other characteristics (1). TBI is a main cause 
of death and disability around the world especially 
in soldiers, children, and young men. Males suffer 
TBIs more frequently than females. Each year about 
1.7 million Americans are saved in emergency rooms 
after suffering a TBI of some severity; of these, 52,000 
die of TBI and other secondary injuries and another 
275,000 are hospitalized and survive (2). Neurological 
damage from TBI does not only occur at the moment of 
focal impact upon the head but also involves secondary 
injury over the ensuing hours and days. This injury, 

which includes changes in cerebral blood flow and 
intracranial pressure, leads to substantial damage 
following the original injury. Besides cell death, a 
series of physiological changes including diffuse 
axonal injury (DAI), micrangium damage, and diffuse 
neuronal injury can also occur on a microscopic scale 
in the cerebral parenchyma following trauma and lead 
to subsequent morbidity. Clinical symptoms of these 
physiological changes include loss of consciousness, 
dizziness, headaches, inattention, and hypomnesia (3). 
 Currently, patients with moderate to severe trauma 
will in all probability receive treatment in an intensive 
care unit after a neurosurgical procedure (4). Treatment 
depends on the patient's stage of recovery. In the 
acute stage, the primary objective of the surgeon is 
to stabilize the patient and do one's best to prevent 
further damage because slight damage can worsen the 
primary injury caused by trauma (4). Rehabilitation is 
the primary treatment for interim and latter stages of 
recovery (4). Prognosis worsens with the severity of 
injury. Permanent disability is considered to occur in 
10% of mild injuries, 66% of moderate injuries, and 
100% of severe injuries (5). Most patients in a coma or 
with a subarachnoid hemorrhage or DAI are considered 
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to have a bad prognosis (6-8). Thus, there is an urgent 
need for novel therapies, medicines, biomarkers to 
predict prognosis, and treatment alternatives.
 This review begins by briefly discussing advances in 
clinical diagnosis and management of TBI. This review 
then focuses on studies of the biomechanics of and 
rehabilitation from TBI. This review then summarizes 
the potential usefulness of alternative treatments of 
TBI. This review concludes by offering ideas on the 
direction for future research into TBI treatments and 
their clinical use.

2. Clinical diagnosis and treatment

TBI has been studied since 1650-1550 BC and there are 
methods of assessing and managing the progression of 
TBI, but its prognosis remains, so more effective forms 
of clinical treatment of TBI should be sought (9).

2.1. Novel methods of assessing TBI

Formalin-fixed, paraffin-embedded archival tissue 
(PEAT) specimens were obtained from a total of 95 
primary ALM (42 males and 53 females, mean age T)

2.1.1. Imaging of structural abnormalities

Concussion, based on the current definition, is a symptom 
of TBI. Concussions were conventionally considered to 
be simply physiological injuries, caused by a metabolic 
disorder of the brain as a result of alternations in ionic 
gradients, a disruption of sodium, potassium, and 
calcium channels, an imbalance in neurotransmitters, and 
inflammation (10). This standpoint has been substantiated 
by a series of metabolic and functional imaging studies in 
humans (11,12) and animals (10). Nevertheless, studies 
of the usefulness of advanced structural neuroimaging 
methods, such as susceptibility weighted imaging and 
diffusion tensor imaging, have revealed subtle structural 
abnormalities in white matter and brain microvasculature 
in a significant proportion of patients with a TBI, and 
especially in patients with severe TBI (11-13).
 Histopathological results from patients with a TBI 
who subsequently died from their injuries suggested 
that DAI is a key pathologic cause of TBI (14,15). 
Advanced neuroimaging studies, and especially those 
involving diffusion tensor imaging (DTI), support this 
contention. DTI is used to test the diffusion of water 
along the axis of white matter tracts and can discern 
the interruption of water diffusion within 2 weeks 
of persistent TBI in people with a normal MRI scan 
(16,17). Although DTI results are potential biomarkers 
of TBI, studies of DTI differ in their description of 
changes in diffusion, facilities use different imaging 
protocols, facilities use different methods of quality 
assurance and methods of analysis, and facilities have 
failed to provide sufficient normative data. These 

problems need to be resolved. 
 A diffuse microhemorrhage (DM) is another 
physiological cause of TBI. DM has long been 
considered to be a physiological cause of severe TBI, 
but abnormalities in cerebrovascular reactivity and 
cerebral blood flow have also been found in mild TBI, 
and especially in people who have suffered multiform 
mild TBIs and who have enduing post-concussive 
symptoms (18,19) Data from neuroimaging studies (20) 
using T2*-weighted gradient echo imaging, which is 
sensitive to DM, found DM in deep white matter in 23 
of 98 patients who suffered a TBI.
 Other abnormities indicative of TBI have been 
identified by computed tomography (CT) and high-
resolution magnetic resonance imaging (MRI). These 
abnormalities include focal contusions, traumatic 
subarachnoid haemorrhage, and extra-axial hematomas. 
MRI is clearly much more sensitive than CT at verifying 
the presence of subtle abnormities. A multicenter study 
of 98 patients revealed that 27 (28%) had an aberrant 
MRI scan an average of 12 days after injury (20). In 
that study, a subarachnoid haemorrhage confirmed by a 
CT scan and multiple foci of hemorrhagic axonal injury 
identified by MRI were related to more severe disability 
three months after TBI (20). 
 After TBI, functional magnetic resonance imaging 
(fMRI) has revealed changes in dynamic functional 
connectivity and the pattern of brain activity in a 
resting state as well as changes in cognitive test results. 
Changes in test results and fMRI results in a resting 
state have been noted even when patients perform well 
on cognitive tests and are allowed to return to regular 
activities (11,12,21).
 Quantitative electroencephalogram has been used 
to identify a physiological disorder after TBI and 
provide evidence of enduring neuronal malfunction 
at a certain point after clinical symptoms disappear 
(22). Although these advanced methods of imaging 
and electroencephalography seem to be more sensitive 
than current methods of clinical diagnosis, they still are 
mainly in the research stage.

2.1.2. Biomarkers

The diagnosis of TBI can be difficult if the injury is not 
witnessed, no evidence of a wound exists, a CT scan is 
normal, or if the diagnosis was delayed for 24 hours or 
longer. To aid in the diagnosis of TBI and decrease the 
dependency on self-reports, biomarkers of TBI in the 
blood, saliva, urine, and cerebrospinal fluid (CSF) have 
attracted the attention of researchers (23). Serum is the 
most often researched biomarker reservoir (24). The 
most extensively researched biomarkers in the blood 
are glial fibrillary acidic protein (GFAP) and ubiquitin 
C-terminal hydrolase-L1 (UCH-L1). A receiver 
operating characteristic (ROC) analysis has indicated 
that the area under the curve is greater than 0.87 for 
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medication is used only if seizures occur (34,35). 
Numerous studies have indicated that phenytoin (PHT) 
can be used to prevent seizures soon after TBI, but 
other anti-seizure drugs such as levetiracetam (LEV) 
are also being used in clinical practice. PHT has its 
drawbacks, such as cognitive side effects and effects 
on physical recovery (36). Over the past few years, 
certain new drugs such as zonisamide and vigabatrin 
have been used clinically in the US, the UK, Australia, 
and Japan for both adjunctive therapy and monotherapy 
for partial seizures (simple, complex, and secondarily 
generalized), generalized seizures (tonic, tonic-clonic, 
and atypical absence), and combined seizures (37-39).
 Coma-inducing medication is sometimes used by 
doctors to induce a temporary coma (a deep state of 
unconsciousness) (40). Because the metabolism of the 
brain has been significantly altered during a TBI and 
areas of the brain may lack a sufficient blood flow, 
coma-inducing drugs are used to profoundly inactivate 
the brain so that it consumes less oxygen (41). This is 
especially helpful if blood vessels, stressed by elevated 
pressure in the brain, are unable to carry the normal 
amount of nutrients and oxygen to brain cells (42). 
Although coma-inducing medications protect the brain, 
the brain as a whole is, by definition, not receiving the 
blood it needs.

3. Studies of mechanisms

3.1. Signaling pathways

Recent clinical therapies cause various adverse reactions 
and have not yielded satisfactory results (43,44). Thus, 
a great deal of work needs to be done to explore the 
molecular mechanisms of TBI and develop more targeted 
therapies.
 An obvious inflammatory response occurs following 
a TBI. In the immediate phase following the primary 
trauma, the inflammatory reaction aggravates cell 
damage and worsens prognosis (45). The nuclear factor 
kappa B (NF-κB) signaling pathway has long been 
considered to be an inflammation-related signaling 
pathway, mainly based on the function of NF-κB in 
the expression of proinflammatory genes including 
cytokines, chemokines, and adhesion molecules (46). 
NF-κB is also considered to play a significant part 
in the regulation of apoptosis (47). Several studies 
at different facilities have found that NF-κB, as a 
downstream element of a series of receptors such as 
toll-like receptor 4 (TLR-4) and tumor necrosis factor 
receptor-associated factor 6 (TRAF6), is activated in 
specimens of animal or human brains (48-50). Thus, 
NF-κB is considered to be a target by which to decrease 
inflammation and apoptosis after TBI. Several research 
teams are developing various NF-κB inhibitors, such 
as SN50, nerve growth factors, and pituitary adenylate 
cyclase-activating polypeptide (PACAP), to suppress 

both GFAP and UCHL1 (25). The high sensitivity and 
specificity of these biomarkers mean that they can 
distinguish between individuals who have suffered 
a TBI and healthy people (0.87, 95% CI 0.83-0.90, 
and 0.91, 95% CI 0.88-0.94, for GFAP and UCHL1, 
respectively) and differentiate between individuals who 
have suffered a TBI and who have an abnormal CT 
scan and those who have a normal CT scan (0.71, 95% 
CI 0.64-0.78, and 0.88, 95% CI 0.84-0.93, for GFAP 
and UCHL1, respectively) (25,26). However, GFAP 
and UCHL1 do not have sufficient sensitivity and 
specificity to predict the prognosis for a complicated 
TBI (25). Biomarkers were detected in professional 
hockey players before the season and again after a 
TBI, and these players had increased concentrations 
of microtubule-stabilized tau protein in the blood after 
a TBI (27). The range of this rise in the concentration 
of tau protein is associated with the duration of 
post-concussive symptoms. Despite advances in 
animal models and human studies and evidence that 
biomarkers can potentially facilitate the diagnosis of 
TBI, further confirmation is needed. Given the variety 
of pathological mechanisms involved in TBI, a set of 
biomarkers with sufficient sensitivity and specificity 
needs to be developed for general clinical use (25).

2.2. Clinical treatment

During TBI, a few cells in the brain are directly 
mechanically damaged, but more cells are injured as a 
result of trauma-induced biochemical changes, which 
is what is referred to as secondary injury. Based on 
guidance from the Mayo Clinic (28), the following 
medications may be used to prevent secondary injury to 
the brain immediately after a trauma.
 Diuretics, which are a group of substances that 
promote the production of urine, are used to treat heart 
failure, liver cirrhosis, hypertension, water poisoning, 
certain kidney diseases, and TBI (29). Drugs such 
as high ceiling/loop diuretics, thiazides, carbonic 
anhydrase inhibitors, potassium-sparing diuretics, 
calcium-sparing diuretics, and osmotic diuretics 
decrease the amount of fluid in tissues and increase 
micturition (30-32). Diuretics, given intravenously 
to people who have suffered a TBI, help decrease 
pressure inside the brain. However, they have serious 
side effects, such as hypovolemia, hypokalemia, 
hyperkalemia, hyponatremia, metabolic alkalosis, and 
metabolic acidosis (33).
 Anticonvulsants, also known as anti-epileptic 
drugs or anti-seizure drugs, are a diverse group of 
pharmacological agents used to treat epileptic seizures. 
People who have suffered a moderate to severe TBI 
are at risk of having seizures during the first week after 
injury. An anti-seizure drug may be given during the 
first week to avoid any additional brain damage that 
might be caused by a seizure. Additional anti-seizure 



www.biosciencetrends.com

BioScience Trends. 2015; 9(3):138-148.141

the up-regulation of NF-κB in brain tissue (47,50,51). 
 Glycogen synthase kinase 3 beta (GSK-3β) is one of 
the most important downstream elements of NF-κB (52), 
so several research teams have focused on changes in its 
expression and its potential as a target for TBI treatment. 
An animal model indicated that GSK-3β is involved in 
neuronal survival after TBI (53). Lin et al. found that 
transfection of GSK-3β small-interfering RNA increased 
cell survival in Sprague-Dawley rats (54).
 In the inflammatory response after TBI, the Janus 
kinase/signal transducer and activator of transcription 
(JAK/STAT) pathway is found to be activated and to 
increase cell apoptosis in the cortical pericontusional 
zone (55). The same research team also reported 
that recombinant human erythropoietin (rhEPO) 
increased the level of p-JAK2 and p-STAT3 expression, 
decreasing apoptosis and promoting cell survival.
 As TBI progresses, reactive oxygen species (ROS) 
are produced in brain tissue and lead to cellular apoptosis 
(56). The nuclear factor (erythroid-derived 2)-like 2 
(NFE2L2 or Nrf2) signaling pathway regulates the level 
of expression of antioxidant proteins that protect against 
oxidative injury induced by trauma and inflammation, 
and this pathway has increasingly attracted attention in 
studies of the molecular mechanism of ROS in TBI (57). 
In rat and mouse experiments, activation of the Nrf2 
pathway has been found to inhibit ROS-induced damage 
in brain tissue (58). 
 Catenin beta 1 (β-catenin) is a dual function protein, 
regulating the coordination of cell-cell adhesion and 
gene transcription (59). β-catenin was found to increase 
in astrocytes in gliogenesis after TBI in the adult brain 
and it was found to be involved in neuronal survival 
(60). Several substances have been found to activate the 
β-catenin pathway to alleviate cell injury. Up-regulation 
of serum- and glucocorticoid-regulated kinase (SGK) 
was reported to protect against neuronal apoptosis via the 
β-catenin signaling pathway (61). Interestingly, in this 
study the β-catenin signaling pathway was activated by 
GSK-3β, which indicates that there may be a signaling 
pathway in TBI. In addition, up-regulation of survivin, a 
key component in the β-catenin pathway, was found to 
promote neurogenesis following TBI (62). 
 Many other signaling pathways have also been 
investigated, such as the Notch pathway, PTEN pathway, 
ERK pathway, and p38MAPK pathway. These pathways 
may be a novel target for new TBI therapies (63-66).

3.2. Microenvironment

The cell microenvironment consists of elements that 
directly affect conditions around a cell or a cell cluster, 
and these elements play a direct or indirect role in 
affecting cell behavior biophysically or biochemically 
(67). The cell microenvironment consists of (i) an 
extracellular matrix (ECM), (ii) cytokines, hormones, 
and other bioactive materials around cells produced 

from autocrine, endocrine, and paracrine secretions, (iii) 
exosomes between cells, and (iv) mechanical forces 
created by the movement of tissue or the movement of 
physiological fluids such as blood. 
 Neuro-inflammation represents an important 
pathological process in secondary injury after TBI (68). 
Resident astrocytes and microglia are usually the initial 
cells that promote an inflammatory cascade following 
tissue injury, and bioactive proteins associated with the 
activation of these cells are often used as biomarkers 
of TBI (69,70). Astrogliosis, an abnormal increase 
in the number of astrocytes due to the destruction of 
nearby neurons, has been defined in the context of 
both neuroprotection and neurodegeneration (71,72). 
Activated astrocytes are able to secret pro-inflammatory 
cytokines, chemokines, and matrix metalloproteinases 
(MMPs) that degrade the extracellular matrix and lead 
to further disintegration of the blood-brain barrier 
(73,74). However, astrocytes are also able to secrete 
molecules that promote repair and regeneration after 
central nervous system (CNS) damage (75,76). 
 Exosomes are cell-derived vesicles that exist in a 
number of biological fluids such as blood and urine 
and in used cell culture medium (77). Exosomes 
interact with the plasma membrane of a target cell by 
ligand-to-receptor binding, fusion, internalization, or a 
combination of these actions. If the exosomes fuse with 
recipient cells, they can transfer their cargo, including 
bioactive lipids, cytokines, growth factors, receptors, 
and hereditary material, to the addressee cell (78). In a 
study, TBI-derived exosomes induced the emergence 
of pro-inflammatory cytokines, including IL-1β. IL-1β 
is produced primarily by microglia and acts as a pro-
inflammatory pyrogen, up-regulating expression of other 
cytokines, proteases, and MMPs (79). Previous studies 
reported that specific microRNAs are associated with 
the progression of neurological disorders, leading to the 
initiation and progression of complications associated 
with a TBI (80). MicroRNAs delivered by exosomes 
produced by injured brain cells do present an advantage 
since they are sensitive, clinically accessible biomarkers 
that can improve the diagnosis of TBI and that can 
function as prognostic markers after treatment.
 Mechanotransduction refers to the various 
mechanisms by which cells translate a mechanical 
stimulus into an electro-chemical signal (81). The role of 
pathological cellular mechanotransduction in brain tissue 
remains unclear. However, several studies have indicated 
that it may be an initiator of TBI. In an in vitro study, 
quick deformation of three-dimensional collagen gels led 
to a decrease in embedded neuronal viability when the 
collagen concentration increased, indicating the potential 
impact of cell-ECM interactions on injury (82). Another 
study suggested that ECM influences axonal injury 
by activating Rho signaling pathways; up-regulation 
of RhoA was accompanied by fluid percussion brain 
injury (83).
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3.3. Stem cells

Among acute neuropathological conditions, TBI is one 
of the major causes of death and disability around the 
world (84). Cell transplantation may be a therapy for 
TBI. Whether the production of new neurons leads to a 
recovery of function, axonal sprouting, synaptic plasticity, 
or neosynaptogenesis is unknown. The rate at which these 
new neurons are generated and the rate of functional 
recovery are known to be very low after TBI (85).
 Studies initially focused on neuronal restoration 
after TBI. One year after transplantation of neural 
precursor cells (NPCs) into the striatum of mice, the 
mice had improved long-term survival and improved 
motor functions without tumor formation (86). Fetus-
derived immortalized neural stem cells (NSCs) were 
transplanted into the injured cortex, leading to recovery 
of motor function but no cognitive improvement 
(87). After these NSCs were transplanted into the 
hippocampus, cognitive improvement was noted but 
there was no improvement in motor function (88).
 A study in 2005 transplanted NSCs into patients who 
suffered a TBI (89). In both studies, the NSCs moved 
from the site of implantation to the site of the injury. In 
addition, the experimental group displayed improved 
recovery in comparison to the control group. At that 
point, fMRI revealed improved activity at the site of the 
injury, positron emission tomography (PET) revealed that 
patients were improving, somatosensory evoked potentials 
(SEP) revealed slight improvement until six months after 
transplantation, and Disability Rating Scale (DRS) scores 
quickly rose six months after transplantation.
 A clinical  study transplanted bone marrow 
mononuclear cells in 10 children (from age 5 to 14) with 
a Glasgow Coma Scale score of 5 to 8 (90). This study 
noted no adverse effects during the six months after 
transplantation. These children were also evaluated with 
the Pediatric Logistic Organ Dysfunction (PELOD) test, 
and no adverse effects on white matter, gray matter, or 
cerebrospinal fluid (CSF) were noted.
 The main obstacle to stem cell transplantation in 
TBI is the recovery of motor function and cognition. 
However, recovery depends on the injured area where 
stem cells are implanted (91). After stem cells are 
implanted into the hippocampus, for example, these 
implanted cells are more apt to survive than when they 
are implanted into various areas of the neocortex. In 
addition, different types of progenitor or stem cells 
seem to perform various functions after transplantation. 
Mesenchymal stem cells (MSCs) are used for 
neurotrophic support, progenitor oligodendrocytes are 
used to establish remyelination in white matter, and 
neural progenitor cells play a role in cell replacement.

4. Alternative and complementary medicine

Although conventional medications have been widely 

used in the clinical treatment of TBI, mounting evidence 
suggests that conventional medications for treatment 
of TBI have a number of drawbacks. Anti-convulsants 
induce amnesia, ataxia, and diplopia, anti-depressants 
induce blurred vision, confusion, and dizziness, and 
anti-psychotics induce headaches. Thus, complementary 
and alternative medicine, such as traditional Chinese 
medicine, may need to supplement treatments for TBI 
(92). Alternative medicine is any practice, approach, or 
medication that is thought to have the healing effects 
of medicine but that does not originate from evidence 
gathered using the scientific method (93). This form 
of medicine includes a large number of health care 
practices, products, and therapies. Complementary 
medicine is a form of alternative medicine used in 
combination with conventional medicine in the belief, 
albeit not proven using the scientific method, that it 
complements the treatment (94). Complementary and 
alternative medicine is referred to as CAM. Traditional 
Chinese medicine (TCM) is one type of CAM, and 
TCM stems from medical practices with common 
concepts that have developed in China for more than 
2,000 years. TCM includes various herbal medicines, 
acupuncture, massage, exercise, and diet therapy 
(95). In experimental and clinical studies, animals 
and patients were given different CAM after TBI to 
assist in recovery when conventional medicine was 
unable to improve the condition of or prognosis for 
the control group (96). Both TCM (Table 1) and its 
bioactive components (Table 2) are being studied at the 
experimental or clinical level. However, most of these 
studies involve experiments in animal models.
 Neuroprotection after TBI is key. Several TCMs 
display anti-inflammatory and/or anti-oxidant action. 
A Xingnaojing injection was found to have a protective 
effect in rats with a TBI. It may have a protective 
effect by alleviating brain edema and inhibiting the 
production of reactive oxygen species (ROS) in rats 
(97). Manasamitra vatakam was also reported to 
prevent brain damage from TBI-induced neurotoxicity 
by increasing superoxide dismutase (SOD) and 70 
kilodalton heat shock proteins (HSP70) in rats (98). 
Studies of a Qingkailing injection and early treatment 
with MLC601 suggested that these TCMs reduce TBI-
induced brain damage by blocking mitochondria-
mediated signaling pathways in rats (99,100). Following 
primary trauma, the inflammatory response promotes 
neural cell damage and worsens prognosis, so studies 
have focused on the anti-inflammatory action of TCMs. 
In a rat model, a modified Shengyu decoction (MSD) 
was reported to be a potential therapy for TBI because 
it decreased the inflammatory response after TBI. MSD 
inhibits the inflammatory reaction by decreasing the 
levels of TNF-α, IL-1β, GFAP-, and Iba1-positive cells 
and by increasing the level of IL-10 (101). Another 
important aspect after TBI is neurogenesis. In addition 
to its anti-apoptotic action, MLC601 was also reported 
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to promote motor recovery in an animal model (100). 
A Xingnaojing injection and MLC901 were reported to 
improve nerve impairment and recovery of cognitive 
function by increasing S100 calcium-binding protein 
beta (S100B) and neuron-specific enolase (NSE) in rats 
(97,102). Qin-Nao-Yi-Zhi-Fang was found to counteract 
glutamate excitotoxicity after TBI by inhibiting nitric 
oxide (103). In addition, the effects of Ginseng total 
saponins and MSD on neurogenesis have been studied. 
These TCMs may improve neurorestoration in an 
animal model of TBI animal model by increasing the 
nerve growth factor (NGF), glial cell line-derived 
neurotrophic factor (GDNF), neural cell adhesion 

molecule (NCAM), and neural stem/progenitor cells 
(NSCs) (104,105). Several clinical studies have treated 
TBI with TCM. A rhubarb extract was reported to be 
able to decrease patients' body temperature, intracranial 
pressure, and hemorrhaging in the digestive tract, but 
the mechanism of this action remains unclear (106). 
Panax notoginseng saponin may have neuroprotective 
action by attenuating edema and hematoma (107). 
 Bioactive components of TCMs have also been 
studied as treatments for TBI over the years. Osthole, 
isolated from the TCM Cnidium monnieri, was found 
to reduce neurological deficits, cerebral edema, and 
hippocampal neuron loss by inhibiting mitochondria-

Table 1. List of TCMs used in the treatment of TBI

TCM

Qin-Nao-Yi-Zhi-Fang

Qingkailing injection

Modified Shengyu decoction

MLC601

Xingnaojing injection

MLC901

Ginseng total saponins

Modified Shengyu decoction

Manasamitra

Rhubarb

Panax notoginseng saponin

Therapeutic targets

Rat cerebral
 neuronal cells

Rats

Rats

Rats

Rats

Rats

Rats

Rats

Rats

Humans

Humans

Ref.

(102)

(98)

(100)

(99)

(96)

(101)

(103)

(104)

(97)

(105)

(106)

BT: body temperature; ICP: intracranial pressure; HITDT: hemorrhage in the digestive tract; S100B: S100 calcium-binding protein beta; NSE: 
neuron-specifi c enolase; VEGF: vascular endothelial growth factor; NGF: nerve growth factor; GDNF: glial cell line-derived neurotrophic factor; 
NCAM: neural cell adhesion molecule; NSC: neural stem/progenitor cell; HSP70: 70 kilodalton heat shock proteins; SOD: superoxide dismutase. 

               Action

Counteracts glutamate
excitotoxicity

Anti-apoptotic action

Anti-inflammatory action

Anti-apoptotic action,
improves motor recovery

Anti-oxidant,
induces neurogenesis

Induces neurogenesis

Induces neurogenesis

Induces neurogenesis

Anti-oxidant

Decreases BT, ICP, and HITDT

Neuroprotective action

                           Mechanism

Inhibits nitric oxide

Inhibits caspase-3

Decreases TNF-α and IL-1β and increases IL-10

Decreases TNF-α and IL-1 and increases IL-10

Increases S100B and NSE

Increases S100B and NSE; regulates aquaporin 4; 
increases VEGF

Increases NGF, GDNF, NCAM, and NSC

Increases NGF, GDNF, NCAM, etc.

Increases HSP70, SOD, etc.

Not indicated

Attenuates edema and hematoma

Table 2. List of TCMs used in the treatment of TBI

Components

Osthole

Curculigoside

Ginsenoside Rbeta1

Z-ligustilide 

Curcumin

Salvianolic acid B

Triptolide

                 Herbs

Cnidium monnieri

Curculigo orchioides Gaertn.

Panax ginseng

Angelica sinensis

Curcuma longa

Salvia miltiorrhiza Bunge

Tripterygium wilfordii Hook. f.

Ref.

(107)

(108)

(109)

(110)

(111)

(112)

(113)

ND: neurological defi cits; CE: cerebral edema; HNL: hippocampal neuron loss; BBB: blood-brain barrier; CV: cerebral vasospasm.

Therapeutic targets

Rats

Cortex neurons

Rats

Rats

Mice

Mice

Rats

                Effects

Reduces ND, CE, and HNL

Reduces neuronal cell loss

Reduces ND, CE, and BBB 
disruption

Reduces ND, CE, and BBB 
disruption, and reduces CV

Attenuates inflammation

Attenuates inflammation

Attenuates inflammation

          Mechanisms

Inhibits mitochondrial 
pathways; inhibits ROS 
release

Inhibits mitochondrial 
pathways; inhibits ROS 
production

Inhibits mitochondrial and 
p53 pathways

Inhibits mitochondrial and 
p53 pathways

Inhibits TLR4/MyD88/
NF-κB pathways

Decreases TNF-α, IL-
1β; increases IL-10 and 
TGF-β1

Decreases TNF-α, IL-1, 
IL-4, IL-6, IL-8, IL-17, 
and IL-23
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mediated signaling pathways and inhibiting ROS 
release in rats (108). Curculigoside, a component of 
Curculigo orchioides Gaertn., was found to reduce 
neuronal cell loss by blocking mitochondria-mediated 
signaling pathways and inhibiting ROS production in 
cortex neurons (109). Two research teams reported 
that ginsenoside Rbeta1 and Z-ligustilide, respectively 
extracted from Panax ginseng and Angelica sinensis, 
were able to reduce neurological deficits, cerebral 
edema, and disruption of the blood-brain barrier in rats 
by inhibit mitochondria-mediated and p53 signaling 
pathways (110,111). Curcumin was found to suppress 
the inflammatory response after TBI by inhibiting the 
TLR4/MyD88/NF-κB signaling pathway in mice (112). 
Chen et al. reported that salvianolic acid B, the most 
abundant component in Salvia miltiorrhiza Bunge, 
inhibits the inflammatory reaction by decreasing TNF-α 
and IL-1β and by increasing IL-10 and TGF-β1 in 
mice (113). Triptolide, a major bioactive compound in 
Tripterygium wilfordii Hook. f., was found to attenuate 
the inflammatory response by decreasing TNF-α, IL-1, 

IL-4, IL-6, IL-8, IL-17, and IL-23 in rat models (114). 
 Although a number of studies have examined 
TCM treatments for TBI, their molecular mechanisms 
have not been clearly indicated and there are few data 
from clinical studies of the components of TCMs in 
particular.

5. Conclusion

TBI is one of the leading causes of death and disability 
worldwide and it has attracted considerable attention 
from doctors and researchers. More accurate methods 
of diagnosis and more effective treatments are urgently 
needed in clinical practice. New methods of imaging 
and novel biomarkers were developed to provide more 
accurate results, but drug development is quite slow 
because it needs to be based on in-depth knowledge of 
the molecular mechanisms of TBI. Thus, researchers 
have extensively explored intracellular signaling 
pathways and the extracellular microenvironment 
(Figure 1). Their results may leads to new therapies to 

Figure 1. Cellular signaling pathways and microenvironment in TBI
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treat TBI. Due to the relatively high cost of novel drug 
development and how long that development takes, 
larger numbers of laboratories and pharmaceutical 
manufacturers are using the original ingredients in 
TCMs or isolating their bioactive components to 
develop drugs. Great progress has been made in 
experimental and clinical studies, but there is still a 
vast gap between TCM development and its clinical use 
worldwide.
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