BioScience Trends. 2017;11(2):202-208. (DOI: 10.5582/bst.2017.01029)
Comparison of the docetaxel concentration in human plasma measured with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and a nanoparticle immunoassay and clinical applications of that assay.
Geng CM, Li PL, Chen XW, Yuan GY, Guo N, Liu HJ, Zhang R, Guo RC
To determine the feasibility of using a nanoparticle immunoassay for clinical therapeutic drug monitoring (TDM) of docetaxel concentrations, a sensitive and simple method of liquid chromatography-tandem mass spectrometry (LC-MS/MS) was established to measure the docetaxel concentration in human plasma and the results of LC-MS/MS and the immunoassay were compared. Docetaxel and paclitaxel (the internal standard, or IS) in human plasma were extracted through protein precipitation, separated on a Diamonsil C18 column (150 mm × 4.6 mm, 5 μm), ionized with positive ions, and detected with LC-MS/MS in multi-reaction monitoring (MRM) mode. Plasma samples from 248 cancer patients were assayed with LC-MS/MS and a nanoparticle immunoassay. Data from the samples were analyzed with the statistical software SPSS and the software MedCalc. Results indicated that the calibration curve of the validated method of LC-MS/MS was linear over the range of 10-2,000 ng/mL, with an lowest limit of quantitation (LLOQ) of 10 ng/mL, and the intra- and interday precision and accuracy were both < ± 15%. Comparison of the two methods indicated that results of the LC-MS/MS were closely related to those of the nanoparticle immunoassay, with a correlation coefficient (R) of 0.965 and acceptable 95% confidence intervals (CI) of ‒ 231.7-331.1 ng/mL. Overall, the established method of LC-MC/MS and the nanoparticle immunoassay were both suitable for measurement of the docetaxel concentration in human plasma, and the immunoassay was far more cost-effective and better at clinical TDM of docetaxel in clinical practice.