BioScience Trends. 2020;14(2):104-114. (DOI: 10.5582/bst.2019.01345)

Comparative transcriptome analysis of transcultured human skin-derived precursors (tSKPs) from adherent monolayer culture system and tSKPs-derived fibroblasts (tFBs) by RNA-Seq

Dai R, Chen W, Hua W, Xiong L, Li Y, Li L


SUMMARY

Transcultured human skin derived precursors (tSKPs) from adherent monolayer culture system have similar characteristics as traditional skin derived precursors (SKPs), making tSKPs a suitable candidate for regenerative medicine. tSKPs can differentiate into fibroblasts. However, little is known about the molecular mechanism of the transition from tSKPs to fibroblasts. Here, we compared the transcriptional profiles of human tSKPs and tSKPs-derived fibroblasts (tFBs) by RNA-Sequence aiming to determine the candidate genes and pathways involving in the differentiation process. A total of 1042 differentially expressed genes (DEGs) were identified between tSKPs and tFBs, with 490 genes up-regulated and 552 genes down-regulated. Our study showed that these DEGs were significantly enriched in tumor necrosis factor signaling pathway, focal adhesion, extracellular matrix-receptor interaction and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway. A further transcription factors (TFs) analysis of DEGs revealed the significantly downexpressed TFs (p21, Foxo1and Foxc1) in tFBs were mostly the downstream nodes of PI3K-Akt signaling pathway, which suggested PI3K-Akt signaling pathway might play an important role in tSKPs differentiation. The results of our study are useful for investigating the molecular mechanisms in tSKPs differentiation into tFBs, making it possible to take advantage of their potential application in regenerative medicine.


KEYWORDS: skin derived precursors, fibroblasts, stem cell, RNA-Seq, adherent culture system

Full Text: