BioScience Trends. 2021;15(2):107-117. (DOI: 10.5582/bst.2021.01017)

Role of circulating tumor cell detection in differentiating tumor recurrence from treatment necrosis of brain gliomas

Gao FL, Zhao WY, Li MX, Ren XH, Jiang HH, Cui Y, Lin S


Differentiating treatment necrosis from tumor recurrence poses a diagnostic conundrum for many clinicians in neuro-oncology. To investigate the potential role of circulating tumor cells (CTCs) detection in differentiating tumor recurrence and treatment necrosis in brain gliomas, we retrospectively analyzed the data of 22 consecutive patients with tumor totally removed and new enhancing mass lesion(s) showed on MRI after initial radiotherapy. The 22 patients were finally classified into tumor recurrence group (n = 10) and treatment necrosis group (n = 12), according to evidence from the clinical course (n = 11) and histological confirmation (n = 11). All 22 patients received CTCs detection, and DSC-MRP and 11C-MET-PET were performed on 20 patients (90.9%) and 17patients (77.3%) respectively. The data of the diagnosis efficacy to differentiate the two lesions by CTC detection, MPR and PET were analyzed by ROC analysis. The mean CTCs counts were significantly higher in the tumor recurrence group (6.10 ± 3.28) compared to the treatment necrosis group (1.08 ± 2.54, p < 0.001). The ROC curve showed that an optimized cell count threshold of 2 had 100% sensitivity and 91.2% specificity with AUC = 0.933 to declare tumor recurrence. The diagnostic efficacy of CTC detection was superior to rCBV of DSC-MRP and rSUVmax in MET-PET. Furthermore, we observed that CTCs detection could have a potential role in predicting tumor recurrence in one patient. Our research results preliminarily showed the potential value of CTC detection in differentiating treatment necrosis from tumor recurrence in brain gliomas, and is worthy of further confirmation with large samples involved.

KEYWORDS: glioma, circulating tumor cell, tumor recurrence, treatment response, radionecrosis

Full Text: